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ABSTRACT

In this paper, an in-house solver MPSPD-SJTU is developed to address 3D Fluid-Structure Interaction (FSI)
problems with fracture. The Moving Particle Semi-implicit (MPS) method is utilized to simulate the violent free-
surface flows while the PeriDynamics (PD) method is employed to model the structures with large deformations
and fractures. Besides, a Kernel Function Based Interpolation Technique (KFBI) is incorporated into the coupling
method to handle the MPS particles and PD particles with different resolutions. Firstly, the MPS solver is utilized
to simulate dam break flow impacting a fixed obstacle, serving to evaluate its accuracy and reliability. Subse-
quently, the PD-based structural solver is validated by simulating an oscillating cantilever plate, a clamped-
clamped elastic beam under uniformly distributed load, the Kalthoff-Winkler impact test, and three-point
bending of an ice beam. Next, the MPS-PD model is validated via some benchmark tests, such as flood
discharge with an elastic plate, hydrostatic water column on an elastic plate, dam-break flow with a hanging
elastic plate, as well as dam-break flow with an elastic obstacle. The numerical results obtained in this study
exhibit good agreement with experimental data as well as those from other numerical methods. Finally, the
coupling model is applied to investigate the dam-break flow impacting a hanging elastic plate with a pre-

fabricated crack.

1. Introduction

Fluid-structure interaction phenomena are quite common in the field
of ocean engineering. For instance, waves slamming on offshore struc-
tures (Fimreite et al., 2025; Zhao et al., 2024; Zhuang et al., 2023),
liquid sloshing in transport vessels (Huang et al., 2023, 2024a; Xie et al.,
2020), and the impact of tsunamis on nearshore structures (Iwamoto
et al., 2019) are typical examples. The hydrodynamic loads in the ocean
typically exhibit characteristics such as strong nonlinearity, dynamic
behavior, and randomness, which may cause significant deformation
and even fracture of structures. Therefore, it is essential to conduct
research on these multi-physics interaction problems, so as to better
understand and address these potential structural risks.

Experimental methods are reliable and provide irreplaceable vali-
dation for such problems. However, experiments incur high costs,
require long lead times, and have limitations in simulating extreme
scenarios. As effective supplements, numerical simulations reduce
research expenses, enable flexible parameter adjustment and repeated
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testing, and safely explore extreme conditions, thus making them
necessary.

According to the coupling strategies of FSI, numerical methods can
be classified into the monolithic and partitioned approaches (Hwang
et al., 2014). The monolithic approaches integrate the governing equa-
tions of the fluid and structural fields into a unified system of equations
(Idelsohn et al., 2008). They simultaneously solve fluid variables (e.g.,
velocity, pressure) and structural variables (e.g., displacement, stress)
through unified discretization schemes, directly reflecting the instanta-
neous FSI. Partitioned approaches treat the fluid field and solid field as
independent systems, and then transfer information via inter-
polation/mapping algorithms at the fluid-structure interface (Li et al.,
2015). The former exhibits superior stability and higher accuracy at the
interface, while the latter possesses greater flexibility, higher compu-
tational efficiency, and ease of coupling different types of mature
single-field solvers. Owing to these advantages, partitioned approaches
are more suitable for solving engineering problems and have attracted
extensive attention in the academic community in recent years.
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Fig. 1. Schematic of the free surface detection.
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In partitioned approaches, different fields can be solved using their
respective optimal numerical methods. Grid-based methods have rela-
tively mature theories. They are characterized by high precision and
strong stability. However, when facing intense flows (e.g., dam-break
flows, wave slamming), meshes are easily distorted. As a consequence,
computational accuracy is sharply reduced, and calculations may even
be terminated. For this reason, frequent mesh reconstruction is required,
which in turn increases complexity and computational costs. Particle-
based methods, by contrast, are naturally suited to handling problems
such as large deformations of free surfaces and moving boundaries (Xie
et al., 2022). Although particle-based methods suffer from inherent is-
sues such as low accuracy and poor stability in certain scenarios, many
enhancement techniques have been proposed to improve their perfor-
mance. For instance, the gradient model of momentum conservation
(Tanaka and Masunaga, 2010) and the Particle Shifting Technique (PST)

Fig. 2. Schematic of the KFBI technique.

Fig. 3. Schematic of particle processing near the fracture surface.
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Fig. 4. Flowchart of the MPS-PD solver.
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Fig. 5. Schematic of the numerical model - dam break flow impacting a fixed square obstacle.

Table 1
Parameters in the simulation - dam-break flow impacting a fixed square
obstacle.

MPS parameters Values

Density (kg/ m®) 1000

Initial particle spacing (m)
Viscosity (Pa- s)
Time step (s)

0.0183,0.025,0.05
8.9x10°°
5.0 x 104

12000
Exp.(Kleefsman et al., 2005)
—— SPH (Sun et al., 2015)
—— MPS solver (dp = 0.05 m)
—— MPS solver (dp = 0.025 m)
8000 |- ——— MPS solver (dp = 0.0183 m)
<
<
[a
4000 |-
0
0

t(s)

Fig. 6. Comparison of pressure time histories at P1 among the results obtained
by experiment (Kleefsman et al., 2005), SPH (Sun et al., 2015), and MPS with
different resolutions - dam-break flow impacting a fixed square obstacle.

(Duan et al., 2018; Gao and Fu, 2023; Gotoh et al., 2024; Khayyer et al.,
2023; Zhan et al., 2025a) have been proposed to prevent particles from
aggregating. The mixed gradient model (Huang et al., 2022; Sun et al.,
2018, 2019), also known as Tensile Instability Control (TIC), has been
developed for simulating high Reynolds number flows involving nega-
tive pressure. Additionally, high-order schemes (Khayyer and Gotoh,
2011, 2012; Liu et al., 2019, 2025; Wang et al., 2023) have also been
proposed to improve the accuracy of the model.

The Finite Element Method (FEM) is relatively mature and is often
used to verify the accuracy of other structural analysis methods, which
has been coupled with two widely used particle-based methods: the
Smoothing Particle Hydrodynamics (SPH) and Moving Particle Semi-
implicit (MPS). These coupling methods have been employed to inves-
tigate complicated FSI problems, such as ship hull water entry (Chen
et al., 2025), wave-structure interaction (Ma et al., 2020; Zhang et al.,

0.51
— Exp. (Kleefsman et al., 2005)
—— SPH (Sun et al., 2015)
—— MPS solver (dp = 0.05 m)
—— MPS solver (dp = 0.025 m)
034 | —— MPS solver (dp = 0.0183 m)
E
T
0.17 +
0.00 . L . L
0 t(s) 4 6

Fig. 7. Comparison of wave height time histories at H1 among the results
obtained by experiment (Kleefsman et al., 2005), SPH (Sun et al., 2015), and
MPS with different resolutions - dam-break flow impacting a fixed
square obstacle.

2022b), sloshing flow-structure interaction (Zhang and Wan, 2018), etc.
However, it is difficult for FEM to handle crack-tip singularities and
accurately predict crack propagation paths.

Compared with the FEM, meshfree methods such as SPH and MPS do
not rely on fixed mesh elements when handling large deformation
problems. This fundamentally avoids the risk of mesh distortion and the
need for remeshing, ensuring the stability and efficiency of the
computation process. Both elastic structures and flow fields can also be
modelled with SPH or MPS (Gotoh et al., 2021, 2025; Khayyer et al.,
2022a; Zhan et al., 2025b). In order to improve the accuracy of the
particle-based structural model, high-order schemes for the discretiza-
tion of the deformation gradient tensor have been developed (Khayyer
et al., 2024; Shimizu et al., 2022). Besides, the Riemann stabilization
schemes (Khayyer et al., 2024; Shimizu et al., 2022) and hourglass
control schemes (Wu et al., 2024; Zhan et al., 2025¢; Zhang et al., 2025)
have been introduced to the particle-based structural model to enhance
the stability of the FSI solver. Models based on SPH or MPS have also
been successfully extended to simulating problems such as the defor-
mation of composite structures (Khayyer et al., 2021b, 2022b) and
structural fracture, even though their ability to capture fracture details
remains limited (Ren and Park, 2023; Singh et al., 2025). Ordinary SPH
or MPS methods are essentially rooted in continuum mechanics, and
their assumptions of continuity, reliance on partial differential equa-
tions (PDEs), and logic of local action conflict with the intrinsic features
of fracture — discontinuity, singularity, and non-locality.
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Fig. 8. Comparison of the dam-break flow morphologies between experimental snapshots (Kleefsman et al., 2005) and numerical results obtained by the MPS -

dam-break flow impacting a fixed square obstacle.

Fig. 9. Schematic of the numerical model - dynamic response of an oscillating
cantilever beam.

Table 2
Parameters in the simulation - dynamic response of an oscillating cantilever
beam.

PD parameters Values

Density (kg/ m®) 1000

Initial particle spacing (m) 2x107%,1x 1073,6.67 x 1074
Young’s modulus (MPa) 2.0

Poisson’s ratio 0.4

Time step(s) 5.0x 106

In recent years, a novel method—PeriDynamics (PD)—has been
proposed by Silling (2000). Notably, this method employs integral
equations to eliminate fracture singularities, achieves natural fracture
through material point bonds, adapts to damage via non-locality, and
enables efficient computation via a meshless framework. Its inherent

Analytic solution Present PD (T /dx =10)

Present PD (T /dx =20)

Present PD (T /dx =30)

Y-displacement (m)
o
o
o

-0.02

-0.04 : ' : ' : ' :
0.00 0.25 0.50 0.75 1.00

t(s)

Fig. 10. Comparison of vertical displacement time histories between the ana-
lytic solution and PD results with different resolutions - dynamic response of an
oscillating cantilever beam.

alignment with the nature of fracture endows it with unique advantages.
Scholars have adopted the Immersed Boundary Method (IBM) to achieve
the coupling of PD and grid-based methods (Dalla Barba et al., 2022;
Yang et al., 2022). In contrast, PD and other particle-based methods
possess an intrinsic compatibility advantage. PD has also been coupled
with SPH for the simulation of violent FSI problems with large defor-
mation of the free surface. Huang et al. (2024b) proposed a coupled
SPH-PD model and applied it to simulate dam failure induced by
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Fig. 11. The stress distribution of the cantilever beam at t = 0.57s - dynamic response of an oscillating cantilever beam.

Fig. 12. Schematic of the numerical model - static deflection of a clamped-
clamped elastic beam under uniform load.

Table 3
Parameters in the simulation - static deflection of a clamped-clamped elastic
beam under uniform load.

PD parameters Values

Density (kg/ m®) 1000

Initial particle spacing (m) 1x1073,8x107%,6.67 x 104
Young’s modulus (Pa) 2.4 x 107

Poisson’s ratio 0.25

Time step(s) 5.0x 10°°

Fig. 13. Comparison of vertical displacement time histories between the ana-
Iytic solution and PD results with different resolutions - static deflection of a
clamped-clamped elastic beam under uniform load.

underwater explosions (Huang et al., 2025b) and soil fragmentation
induced by buried explosions (Huang et al., 2025a). Yao and Huang
(2022) also developed a SPH-PD model, which is employed to study
water-jetting-induced rock fragmentation phenomena. A
multi-resolution technique has also been introduced to this SPH-PD
model (Yao and Huang, 2022). Liang et al. (2025b) established a 3D
ice tank based on the SPH-PD model. SPH-PD models are also utilized to

Fig. 15. Schematic of the numerical model - Kalthoff-Winkler impact test.

Table 4

Parameters in the simulation - Kalthoff-Winkler impact test.
PD parameters Values
Density (kg/m®) 8000
Initial particle spacing (m) 1x 1073
Young’s modulus (Pa) 1.91 x 10"
Poisson’s ratio 0.25
Critical energy release rate (J/m?) 6.91 x 10*
Critical stretch sp 0.01
Time step(s) 1.0x 1077

Fig. 14. The stress distribution of the beam after reaching steady state - static deflection of a clamped-clamped elastic beam under uniform load.
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Fig. 16. Crack path reproduced by BB-PD and OSB-PD - Kalthoff-Winkler impact test.

Fig. 17. Damage process simulated by OSB-PD - Kalthoff-Winkler impact test.

simulate the dynamic responses of sea ice cantilever beams (Cao et al.,
2024) and hydro-elastic water entry (Jing et al., 2024). These studies
fully demonstrate the feasibility of coupling particle-based fluid
methods (e.g., SPH) with PD for fracture-related FSI problems. However,
in the above-mentioned SPH-PD methods, the numerical instability and
pressure oscillations of the traditional Weakly Compressible SPH
(WCSPH) method used to simulate fluids cannot be ignored, which may

significantly affect the initiation and propagation of cracks.

Notably, the incompressible MPS method exhibits high stability in
simulating violent flow processes — a key advantage for ensuring ac-
curate fluid load transfer in FSI problems involving fracture. However,
there are few studies on coupling MPS with PD, especially for 3D FSI
problems involving structural fracture. Considering the high computa-
tional cost inherent in 3D FSI numerical simulation, another
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Fig. 18. Schematic of the numerical model - three-point bending of an
ice beam.

Table 5
Parameters in the simulation - three-point bending of an ice beam.
PD parameters Values
Density (kg/m?) 900
Initial particle spacing (m) 5x 1072
Young’s modulus (Pa) 6.83 x 10°
Poisson’s ratio 0.3
Critical energy release rate (J/ m?) 19.0
critical bond stretch ratio so 3.9x 1074
Time step(s) 2.0x 107°
1200
ll" — =Exp. (Xueetal., 2018)
1000 + |‘ﬂ | —— BB-PD (Xue et al., 2018)
J | IR —— Present OSB-PD (V,=-0.02 m/s)
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Fig. 19. Comparison of force - displacement relationship among the results
obtained by experiment(Xue et al., 2018), BB-PD (Xue et al., 2018), and present
OSB-PD with different force loading rates - three-point bending of an ice beam.

contribution of this study is to introduce KFBI into the MPS-PD model to
achieve multi-resolution simulation.

The remaining parts of this study are organized as follows: Section 2
briefly introduces the improved MPS method, the PD method and their
coupling algorithm. Section 3 validates the numerical model through
several benchmarks and presents the numerical results of FSI problems
with fracture. Section 4 presents the concluding remarks and future
perspectives.

2. Numerical methods
2.1. MPS method for fluid simulation
The MPS method was first proposed by Koshizuka and Oka (1996)

and was initially designed for simulating viscous and incompressible
fluids. Its governing equations comprise the mass conservation equation

Ocean Engineering 343 (2026) 123345

and the momentum conservation equation, which are given as follows:

D

% Vv =0 )
Dv

Pipe = ~VP+ V2V + pig (2)

where subscript f denotes the MPS fluid particle; Ps> &V, P, iy, g Tepre-
sent density, physical time, velocity vector, pressure scalar, dynamic
viscosity and gravitational acceleration vector, respectively.

The degree of interaction among MPS particles depends on the kernel
function w(r). The kernel function proposed by Zhang et al. (2014),
which can significantly suppress non-physical pressure oscillations, is
employed. Its specific form is given by:

r.
T 1 o<
0.85r + 015r, | 05T 3)

0 r>r,

w(r) =

where r is the distance between two MPS particles, and r, is the influence
radius. Specifically, r, is set to 2.01 ry for the gradient model and 4.1 ry
for the Laplacian model, where ry is the initial particle spacing.

To approximate physical interactions between particles, numerical
constructs such as gradient, divergence, and Laplacian models are
employed as discrete operators in the particle method. Their specific
definitions are given by:

d b + &
(V) :FZ |1_?_—r12(13*ri)w(|rj*ri|) (4
jA Y~ T
d (@ — @) (1 — 17)
V), == VT (| -
( )i HO; |rj7ri{z W(|1‘] 1‘|) %)
2d
(V2 =-5: > (& — d)w(|n — i) ©®
7
;quf —1i|)[1; - x|
1= @)
> w([ty — 1)
i

where subscript i and j denote particle i and its neighbor particle j, ¢ is
the physical scalar of MPS particles, r is the position vector relative to
the origin, ® is the physical vector, d is the number of space dimensions,
n is the initial particle density, 1 is a parameter that serves to ensure the
increase in variance matches the analytical solution.

For the MPS method, the pressure field is obtained by solving the
Poisson Pressure Equation (PPE). The present work adopts the mixed
source term method (Khayyer and Gotoh, 2011; Tanaka and Masunaga,
2010), which balances both stability and accuracy, and its expression is
given by:

2 k+ly Prg pr (n*); —n°
(V) = (1= ) vy =y L T ®
where p**1 is the pressure at step k+ 1, At is the time step, u; is the

intermediate velocity, (n*); is the intermediate particle density, and y is a
blending parameter, with its value set to 0.01 in the present work.

The free surface detection method, which relies on the asymmetric
distribution of neighboring particles, is adopted in the present work,
given by:

<n>; <png 9
_d(h-r)
(F); = E;mw({rj - 1'z|) (10)
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Fig. 20. Fracture process of ice beam simulated by PD (V;, = —0.01 m/s) - three-point bending of an ice beam.
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Fig. 21. Time histories of different energies (V;, = —0.01 m/s) - three-point
bending of an ice beam.

Fig. 22. Schematic of the numerical model - deformation of an elastic gate
induced by flood discharge.

(F); > a|F°| an

where F is defined as the vector that characterizes the asymmetric dis-
tribution of MPS neighboring particles, and |F°| is defined as the (F);
value corresponding to the initial distribution of internal fluid particles.
Parameters # and « are assigned values of 0.8 and 0.9, respectively.
Fig. 1 presents the schematic of the free surface detection. It can be
observed that when fluid particles are inside the fluid, the (F); is

Table 6
Parameters in the simulation - deformation of an elastic gate induced by flood
discharge.

MPS parameters Values PD parameters Values
Density (kg/m?) 1000 Density (kg/m?) 1100
Initial particle 1.25 x Initial particle 1.25x 1073,1.0 x
spacing (m) 1073 spacing (m) 1073,
8.33x 1074, 6.25 x
1074
Viscosity (Pa-s) 8.9 x Young’s modulus 8.0 x 10°
10°° (Pa)
Time step (s) 2.5x Poisson’s ratio 0.4
104
_ _ Time step (s) 5.0x 10°°

relatively small due to the relatively uniform distribution of surrounding
particles. In contrast, when fluid particles are on the free surface, there
are no particles outside the free surface, and this uneven distribution
leads to a significantly larger value of (F);.

The time step of the MPS method needs to satisfy the Courant-
Friedrichs-Lewy (CFL) condition, which is given by:

C
Atps < vip (12)

max

where Atnps and dp represent the time step of the MPS method and the
initial particle spacing, respectively. vi.x represents the maximum ve-
locity of the field, and for dam-break cases, it is generally estimated to
take the form vy = \/ﬁ C is set to 0.5 in this study.

2.2. Ordinary state-based PD for structure simulation

PD is mainly categorized into three types: Bond-Based PD (BB-PD),
Ordinary State-Based PD (OSB-PD), and Non-Ordinary State-Based PD
(NOSB-PD). BB-PD, which is the simplest model, relies on pairwise
particle bonds but suffers from a fixed Poisson’s ratio (0.25) for isotropic
materials and limited applicability to only brittle materials, restricting
its engineering utility. While NOSB-PD suffers from zero-energy modes
and numerical instability generated by non-local deformation gradient
computation. In contrast, OSB-PD achieves an optimal balance between
adaptability, simulation precision, and result stability—making it
particularly suited for this study’s focus on analyzing fluid-fracture
coupling problems (Li et al., 2022).

The equation of motion for PD particles in structures is derived based
on Newton’s second law, expressed as:

ext

. F
paio = [ [Tt} — o) = Tl €06 ~ Xp)dVs 8 + 0 (13)

5
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Fig. 23. Comparison of displacement time histories among the results obtained by experiment (Antoci et al., 2007), ISPH-SPH (Khayyer et al., 2018), and MPS-PD
with different interpolation radii (dp/dx = 1.5) - deformation of an elastic gate induced by flood discharge.

Fig. 24. Comparison of displacement time histories among the results obtained by experiment (Antoci et al., 2007), ISPH-SPH (Khayyer et al., 2018), and MPS-PD
with different resolutions (r; = 2dp) - deformation of an elastic gate induced by flood discharge.

where subscripts a and b denote the PD structural particles, tu, is the
acceleration vector, x is the initial relative position, the R; is the influ-
ence region of PD particles, defined as R; = {Xp : [Xp —Xq| < 6} with §
being 3.015dx in the present work. T denotes the force density vector, V
is the volume of PD particle, p,g is the body force per unit volume, F&* is
external force exerted on the PD particles, consisting of fluid force and
boundary force in this study.
The force density vector T is given by:

I[xav t]<xb - xa> = E[Xa, t]<xb - Xu)M 14

where t is the force density scalar state, and M is the unit deformation
vector state. In 3-D problems, their specific expressions are given by:

e, €% — %) = 3K* 0 + awe s)

(Xp — Xq) + (up — ug)
|(Xb - Xa) + (ub - ua)l

M= (16)

where k' and « are positive constants, w is the influence function and w =

10

2
(1 - ("”;—2“)2) (Huang et al., 2015) is employed in the present study, m

is the weighted volume, § and e? are the volume dilatation and devia-
toric extension state, u is the displacement vector of a PD particle. In 3D
problems, the parameters mentioned above can be given by:

K= ko=t
m

m= / wlix, — % |%dVs a7
Rs

0-2

Rs

w|$

(wxe)dVy, e = e —

where k and u represent the bulk modulus and shear modulus of the
material, respectively, e is the elongation scalar state(Yao et al., 2023),
expressed as:

e=y(Xp — Xq) — X(Xp — Xq) 18
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Fig. 25. Comparison of the discharge flood morphology and structural deformation between experimental snapshots (Antoci et al., 2007) and numerical results
obtained by the present 3D MPS-PD solver-deformation of an elastic gate induced by flood discharge.

where x and yare the initial distance and the current distance between where s is the scalar bond stretch between neighboring PD particles,

neighboring particles, respectively. which is given by,
When the bond length between neighboring PD particles exceeds the

critical value sy, the force density generated by their interaction will s— (%6 — %) + (Wp — )| — |(Xp — Xo)| (20)
disappear, which is an irreversible process. The function ¢, which is (s — xa)|
utilized to describe the interaction state between neighboring PD par- The critical stretch s, (Madenci and Oterkus, 2014) is given by:
ticles, is given by:

1,if s < s So = 4GO 5 @n
Pab = { 0, elsewhere a9 (3/‘ + (%) (k - §/‘>>5

11
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Fig. 26. Schematic of the numerical model - deformation of an elastic plate
induced by a hydrostatic water column.

Table 7
Parameters in the simulation - deformation of an elastic plate induced by a
hydrostatic water column.

MPS parameters Values PD parameters Values
Density (kg/ m*) 1000 Density (kg/m?) 2700
Initial particle spacing 1.0 x Initial particle spacing 1.0x 1072, 8.0 x
(m) 102 (m) 1073,
6.67 x 1073
Viscosity (Pa- s) 8.9 x Young’s modulus (Pa) 67.5 x 10°
10°°
Time step (s) 1.0 x Poisson’s ratio 0.34
1073
- - Time step (s) 2.0x 10°°
0.0E+0
— T T Analytic solution MPS-PD (dp/dx =1)
MPS-PD (dp/dx =1.25) MPS-PD (dp/dx =1.5)
E -1.0E-6
2 MHAmAcc==== = = = = = - - - - - - -
<5
£
[}
Q
]
=3
2
< -2.0E-6
>
-3.0E-6 + 1 + . + . +
0 1 2 3 4

t(s)

Fig. 27. Comparison of displacement time histories of the P probe between the
analytic solution and MPS-PD results with different resolutions-deformation of
an elastic plate induced by a hydrostatic water column.

where Gy is the critical energy release rate of the material and § is the
horizon.

The selection of PD time step follows the critical value proposed by
Zhang and Qiao (2020), given by:

Atpp < 2p5/<z 2(1wa> (22)
beQ,

where Atpp, is the time step of PD simulation.

12
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Fig. 28. Snapshots of pressure/stress fields at t = 4.0 s reproduced by the MPS-
PD solver with dp/dx = 1.5 - deformation of an elastic plate induced by a hy-
drostatic water column.

1.0E-3

0.0E+0

-2.0E-3

Analytic solution MPS-PD (dp/dx =1)

-3.0E-3

MPS-PD (dp/dx =1.25) MPS-PD (dp/dx =1.5)

-4.0E-3 . L . L . L .
0 1 2 3 4
t(s)
Fig. 29. Comparison of time histories of normalized total energies between the
analytic solution and MPS-PD results with different resolutions - deformation of
an elastic plate induced by a hydrostatic water column.

2.3. Coupling of MPS and PD

In the MPS model, solid boundaries are composed of multiple layers
of particles (Xie et al., 2021a). Among these, the pressure of the outer-
most layer particles (wall particles) that are adjacent to the fluid is ob-
tained by solving the PPE (Zhang and Wan, 2017). For MPS-PD coupling,
the simplest method is to discretize the elastic structure using MPS and
PD particles with the same resolution, which can be referred to as
Point-to-Point (PtoP) coupling. Structural particles possess the charac-
teristics of both MPS particles and PD particles. MPS wall particles
transmit the obtained fluid pressure to PD particles; conversely, PD
particles transmit displacement and velocity to the MPS structural par-
ticles of the elastic structure. The above coupling process can be

expressed as:
F*' = —(P°AS)n (23)

(24)
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Fig. 30. Schematic of the numerical model - deformation of a hanging elastic plate induced by the dam-break flow.

Table 8
Parameters in the simulation - deformation of a hanging elastic plate induced by
the dam-break flow.

MPS parameters Values PD parameters Values

Density (kg/ m®) 1000 Density (kg/m?) 1250

Initial particle spacing 1.75 x Initial particle spacing 1.167 x
(m) 1073 (m) 1073

Viscosity (Pa- s) 8.9x 10°° Young’s modulus (Pa) 4.0 x 10°

Time step (s) 25x%x 104 Poisson’s ratio 0.4

_ - Time step (s) 5.0x 107

(25)

where P* is the pressure exerted on a PD particle, AS is the force-bearing
area of MPS boundary particles, n is the normal direction of the
boundary.

Several multi-resolution techniques are proposed to improve the
efficiency and performance of FSI solvers. For example, the elastic
structures and flow fields can be simulated with different resolutions
using a multi-resolution particle method (Khayyer et al., 2019, 2021a).
Besides, a high-resolution region can be set around the elastic structure.
When coarse particles enter this region, they are split into finer particles
by means of an Adaptive Particle Refinement (APR) method (Lyu et al.,
2023). In the present study, the Kernel Function-Based Interpolation
(KFBI) technique is introduced into the MPS-PD solver. This technique
previously was utilized and validated in 3D MPS-FEM solver (Zhang
et al., 2022a), 2D SPH-Phase Field solver (Rahimi and Moutsanidis,
2023), and 2D SPH-PD solver (Rahimi et al., 2022). The schematic of the
KFBI technique is presented in Fig. 2. The pressure exerted on the PD
particles on the structural surface is obtained by interpolating the
pressure of MPS wall particles within their influence domain, given by:

> PmW([r; — xo])
P (26)
« T TS Wil )
L
The displacement and velocity of MPS structural particles are, in
turn, obtained by interpolating the displacement and velocity of PD
particles, which are given by:

; u,W(jte — 11)

_ 27
> Wile, —x) @7)

u;

Zﬂ: u W([r — i)

_ 28
> Wile, — 1) @8)

Vi

Particle treatment near the fracture surface is shown in Fig. 3. When
the structure fractures, MPS structural particles only interact with PD
structural particles on the same side of the fracture surface. To prevent
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the penetration of fluid particles, when fluid particles approach the
ghost particles at the fracture surface, these ghost particles are directly
converted into wall particles and participate in solving the PPE.

The flow chart of the in house MPSPD-SJTU solver is presented in
Fig. 4. Since the MPS method employed in this study is a semi-implicit
solution, while the OSB-PD is an explicit solution, the time step of
MPS can be larger than that of PD to balance the stability and efficiency
of the MPS-PD solver. The Modified Serial Staggered (MSS) strategy (Sun
et al., 2021) is employed, and under this strategy, the PD solver iterates
several times within one MPS iteration loop. After the structure frac-
tures, the fragments may collide with the wall boundary. Therefore, in
addition to the PD force and FSI force, the DEM model is also invoked to
calculate the contact force. The calculation of contact forces has been
described in detail in our previous work (Xie et al., 2021b, 2025), and
will not be repeated here.

3. Numerical results
3.1. Validation of MPS model

In this section, the accuracy of the MPS solver is first verified. The
MPS solver is utilized to simulate dam-break flow impacting a fixed
square obstacle, which has been studied experimentally by Kleefsman
et al. (2005). The schematic of the numerical model is presented in
Fig. 5. The dimensions of the numerical tank are 3.22m x 1.0 m x
1.0 m.

A water column of 1.228 m x 0.1 m x 0.55 m is located on the right
side of the water tank. A square obstacle with dimensions of 0.161 m x
0.403 m x 0.161 m is placed on the central axis of the water tank, 0.744
m away from the right wall of the tank. A pressure probe (marked as P1)
is installed on the square obstacle, and a wave height probe (marked as
H1) is installed at the bottom of the water tank. Other numerical pa-
rameters are listed in Table 1.

Fig. 6 and Fig. 7 show the pressure and wave height time histories
measured by the P1 and H1 probes. It can be noted that the MPS results
converge well to the experimental data as the resolution is refined. Be-
sides, the high-resolution MPS results all show good agreement with
both the SPH simulation results (Sun et al., 2015) and the experimental
data (Kleefsman et al., 2005) in terms of peak values and overall trends.

Fig. 8 shows the snapshots obtained respectively from the experi-
ment and the MPS simulation. It can be seen that the MPS method can
accurately describe the shape of the free surface of dam-break flow and
capture the droplet splashing phenomenon during the impact process.
This comprehensive comparison fully verifies the reliability and accu-
racy of the MPS method in simulating dam-break flow-related problems.

3.2. Validations of OSB-PD model

3.2.1. Dynamic response of an oscillating cantilever beam
An oscillating cantilever beam is first simulated to validate the ac-
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Fig. 31. Comparison of the dam-break flow morphologies and structural deformations at different instants between experimental snapshots (Yilmaz et al., 2021) and
numerical results obtained by the present 3D MPS-PD solver - deformation of a hanging elastic plate induced by the dam-break flow.

Fig. 32. Comparison of horizontal displacement time histories among the results obtained by experiment (Yilmaz et al., 2021), 2D SPH-SPH (Meng et al., 2022), 2D

SPH-PD (Liang et al., 2025a), 3D SPH-FEM (Chen et al., 2025), and the present 3D MPS-PD - deformation of a hanging elastic plate induced by the dam-break flow.
14
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Fig. 33. Comparison of plate deformation results modelled by MPS and PD -
deformation of a hanging elastic plate induced by the dam-break flow.

Fig. 34. Schematic of the numerical model - fracture of an elastic baffle
induced by the dam-break flow.

curacy of the PD part in the MPS-PD solver. The sketch of this numerical
model is presented in Fig. 9. The cantilever beam has a length of 0.2 m, a
width of 0.01 m, and a height of 0.02 m. A displacement probe is
installed at the centroid of the free end. At the initial moment, the
cantilever beam is undeformed and in an initial equilibrium position.
The initial vertical velocity distribution acting on this beam is given by:

_ fx)
vy(x) = Vy(L)COE (29)
f(x) = (cos (kL) +cosh (kL))(cosh (kx) — cos (kx)) + (sin (kL) (30)

—sinh (kL))(sinh (kx) — sin (kx))
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Table 9
Parameters in the simulation - fracture of an elastic baffle induced by the dam-
break flow.

MPS parameters Values PD parameters Values
Density (kg/m?) 1000 Density (kg/m?) 2500
Initial particle spacing 2.0 x Initial particle spacing (m) 1.5x 1073
(m) 1073
Viscosity (Pa-s) 8.9 x Young’s modulus (Pa) 1.0 x 106
107°
Time step (s) 2.5x% Poisson’s ratio 0.0
1074
- - Critical energy release rate 6.07 x 103,
(J/m?) 97.9
- - Critical bond stretch ratio sy 1.0, 0.127
_ - Time step (s) 5.0x 10°°

where vy (L) = 0.01m/s is the initial velocity of the cantilever beam’s
free end. For the fundamental mode, the value of kL is set to 1.875. ¢g is
the sound speed and can be calculated as:

Co = \/Ks//)s = \/ES/(S(I - 20)/’5)

(€19)

where K; is the bulk modulus, E; is the Young’s modulus, v is the Pois-
son’s ratio, and p; is the density of the cantilever beam. Other numerical
parameters can be found in Table 2.

The vertical displacement time histories of the probe are presented in
Fig. 10. The detailed derivation of the analytical solution can be found in
the literature (Khayyer et al., 2022b). It can be observed that the results
with high resolution are slightly closer to the analytical solution. In
general, the PD numerical simulation results with different resolutions
are in good agreement with the analytical results in terms of both phase
and peak value, which implies that the present PD solver exhibits good
convergence characteristics. Besides, the stress distribution, as shown in
Fig. 11, is smooth and matches well with deformation.

3.2.2. Static deflection of a clamped-clamped elastic beam under uniform
load

The accuracy and stability of the PD solver are further investigated
by simulating a clamped-clamped beam under uniform load, which has
been utilized to validate the SPH structural solver by Khayyer et al.
(2022b). The schematic of the numerical model is shown in Fig. 12. The
beam has a length of 0.2 m, a width of 0.012 m, and a height of 0.012 m.
A deflection probe is installed at the centroid of the bottom of the beam.
A uniform load q = 20N/m? is applied to the top surface of the beam.
Other numerical parameters are presented in Table 3.

Vertical displacement time histories measured by the probe are
presented in Fig. 13. The analytic solution is obtained based on the
Euler-Bernoulli beam theory and the detailed derivation process can be
found in the referenced literature (Khayyer et al., 2022b). The
displacement time histories obtained by PD eventually stabilize at a
constant value after a brief oscillation. It can be observed that the de-
flections from simulations with different resolutions are very close to
one another, and among these simulations, the deflection from the
high-resolution simulation is the closest to the analytic solution. The
stress field is very smooth and continuous, as shown in Fig. 14.

3.2.3. Kalthoff-Winkler impact test

The Kalthoff-Winkler impact test is a well-known benchmark case
(Kalthoff, 2000), which has been widely used to verify the accuracy of
the PD solver in simulating fracture problems. Fig. 15 shows the sche-
matic of the numerical model. There is a steel plate with a length of 0.2
m, a height of 0.1 m, and a width of 0.09 m. Two prefabricated cracks
(each 0.05 m in length) extend inward from the upper edge of the steel
plate, with a distance of 0.05 m between them. A cylinder with a height
of 0.05 m and a diameter of 0.05 m impacts the area between the pre-
fabricated cracks on the top of the steel plate at a velocity of 32 m/s in
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Fig. 35. Comparison of the dam-break flow morphologies and structural deformations between numerical snapshots obtained by 2D SPH-FPM (Liu et al., 2020) and
those by the present 3D MPS-PD - fracture of an elastic baffle induced by the dam-break flow.
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Fig. 36. Comparison of horizontal displacement time histories of probe A
among the numerical results obtained by 2D PFEM (Idelsohn et al., 2008), 2D
SPH-FPM (Liu et al., 2020), 2D SPH-FEM (Long et al., 2016), 2D SFEM (Zhang
et al., 2019), 3D SPH-PD (Dai et al., 2023), and the present 3D MPS-PD -
fracture of an elastic baffle induced by the dam-break flow.

the vertical downward direction. Other numerical parameters can be
found in Table 4.

Fig. 16 presents the crack path reproduced by BB-PD and OSB-PD.
Specifically, the BB-PD solver used herein was developed by rewriting
the Fortran code from Madenci and Oterkus (2014) in C++. It can be
observed that the crack morphologies simulated by the BB-PD solver and
the OSB-PD solver are very similar. Both solvers have captured two types
of cracks: one is the primary crack on the impact side, which is related to
the presence of the prefabricated crack; the other is the secondary crack
generated on the non-impact side due to the tensile force induced by the
deformation of the steel plate. The overall path angles are approximately
113.08° for BB-PD and 113.43° for OSB-PD, respectively. Both values are
very close to the experimental value of 110°, and relative errors of these
two values are both less than 5%. Fig. 17 presents the damage process
simulated by OSB-PD. It can be noticed that the primary crack initiates
from the tip of the prefabricated crack and gradually extends to the side
edge of the steel plate. The secondary crack gradually propagates from
the non-impact side when the steel plate deforms significantly.

3.2.4. Three-point bending of an ice beam

In this section, the three-point bending test on an ice beam (Xue
et al., 2018) is simulated, and the accuracy of the PD numerical model is
verified from the perspectives of load and energy. The schematic of the
numerical model is presented in Fig. 18. An ice sample with a length of
0.65 m, a width of 0.07 m, and a thickness of 0.07 m is placed on two
support points with a span of 0.6 m. The loading point P is located at the
midspan of the ice and on its upper surface. Simulations are conducted
with the loading point P moving downward at velocities V;, of 0.005 m/s,
0.01 m/s, and 0.02 m/s. Other numerical parameters are listed in
Table 5.

Fig. 19 presents the load curves obtained by different approaches.
Without any damping added, during the sea ice deformation phase, the
load curve obtained by OSB-PD exhibits slight oscillations. Among these,
the load curves obtained at loading rates of —0.01 m/s and —0.005 m/s
show good agreement, indicating that the loading process in the nu-
merical simulations can be regarded as a quasi-static process (Di, 2015;
Xiong et al., 2025). It can be seen that during the ice deformation phase,
the slope of the curve obtained by OSB-PD shows good agreement with
the experimental results. Furthermore, the peak value of the force ob-
tained by OSB-PD is 1160 N, which is also very close to the experimental
value of 1128 N Fig. 20 presents the snapshots of the present OSB-PD
simulation. It can be seen that cracks initiate from the bottom at the
midspan of the ice, and the ice is eventually split into two parts. The
same phenomenon has also been observed in different experiments (Ji
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et al., 2011; Ni et al., 2021).
The energy conservation features in the structure domain of the
present OSB-PD solver are investigated. Energies need to satisfy:

EL =F, =E; +E; + E; + E; (32)
where E; refers to the work done by the loading point on the structural
domain. E5 is the total energy of the structural domain. E, Ey, Ej, and E
are elastic strain energy, the kinetic energy, gravitational potential en-
ergy, and released fracture energy of structure domain. Different en-
ergies can be calculated as:

E = ZFL(t)VLAtPD (33)
N
1 .
Ey =) omifta*. By = D megu, (34)
acQg acQg
B=YWV.=Y <1k’92 o3 (a)(ﬁ)sz>> v, (35)
acQg asQg 2 2 Rs

ES =

>

(1(1’912 +d6,0, + EZ (@Zsozv,,)> Vo, d =k — “ (36)
acQg 2 2 Hy 9

where N and Fj, refer to the total number of time steps and the external
load, respectively. ; and 6, are the volume dilatation of the fractured
part and the volume dilatation of the unfractured part. H; is the region
where fracture occurs within the influence domain of PD particle a. The
method for calculating released fracture energy was proposed by Wu
(2024), which builds upon the approach of Zhang and Qiao (2018) by
incorporating the coupling effect of ; and 6,.

Fig. 21 shows time histories of different energies. As can be seen,
during the deformation stage, the total energy of the structural domain
is almost consistent with the external work, while a small amount of
gravitational potential energy is converted into elastic strain energy.
After the ice is completely fractured, the loading point detaches from the
ice, the external force no longer does work, and the total energy of the
structural field also remains unchanged. This total energy is slightly
lower than the total work done by the external force, with a relative
error less than 4 %. In general, the present OSB-PD model exhibits good
energy conservation performance and can meet the requirements of
engineering applications.

The numerical results presented above indicate that the OSB-PD
solver exhibits high accuracy and can be further coupled with MPS.

3.3. Validations of MPS-PD model

3.3.1. Deformation of an elastic gate induced by flood discharge

The accuracy of multi-resolution fluid-structure interpolation will be
studied by simulating the flood discharge with an elastic gate, which is a
benchmark test carried out by Antoci et al. (2007). The schematic of the
numerical model is presented in Fig. 22. There is a water tank with a
length of 0.5 m and a width of 0.1 m. A water column with a length of
0.1 m, a width of 0.1 m, and a height of 0.14 m is located on the right
side of the tank. There is an elastic gate hung from a rigid wall. The gate
is located at the left end of the water column and adjacent to it. The
elastic gate has a height of 0.079 m, a width of 0.1 m, and a thickness of
0.005 m. A displacement probe is installed at the center of the bottom
end of the elastic gate. At the initial state, the elastic gate is undeformed.
As the numerical simulation begins, the elastic gate undergoes defor-
mation under the action of the water pressure. Other numerical pa-
rameters are listed in Table 6.

Fig. 23 depicts the X-directional and Y-directional displacements
measured by the probe. It can be seen that the displacements in the two
directions first rise rapidly and then gradually decrease over time.
Overall, the numerical simulation results for different interpolation radii
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Fig. 37. Dam-break flow morphologies and structural damage produced by the present 3D MPS-PD - fracture of an elastic baffle induced by the dam-break flow.

Fig. 38. Comparison of vertical displacement time histories of the probe P2
among the numerical results obtained by 2D SPH-FPM (Liu et al., 2020), 3D
SPH-PD (Dai et al., 2023), and the present 3D MPS-PD with different resolutions
- fracture of an elastic baffle induced by the dam-break flow.
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are relatively consistent and are in good agreement with the experi-
mental results. Among them, the numerical simulation result of r,; = 3dp
(where dp is the initial particle spacing of MPS) is slightly lower than
those under other interpolation radii during the descending phase. This
is because, as the influence radius increases, the pressure difference
between adjacent regions exerted on the PD particles decreases. A
convergence study is also conducted, as shown in Fig. 24. It can be
observed that the numerical results with KFBI are almost identical to
those with PtoP, which verifies the accuracy of KFBI. Besides, the nu-
merical results with different resolutions show good agreement with
each other, which indicates that the MPS-PD solver exhibits high
convergence performance.

Fig. 25 shows the experimental snapshots and the corresponding
numerical simulation results. At different times, both the flow
morphology and the deformations of the elastic gate obtained by the
MPS-PD solver are in good agreement with the experimental results.
Moreover, both the flow field pressure distribution and structural stress
distribution obtained from the simulation are very smooth and contin-
uous, which further confirms the stability of the MPS-PD solver.
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Fig. 39. Vertical displacement time histories of the probe P2 - fracture of an
elastic baffle induced by the dam-break flow.

3.3.2. Deformation of an elastic plate induced by a hydrostatic water
column

The accuracy and stability of the presented MPS-PD FSI solver are
further evaluated through an FSI benchmark test of a hydrostatic water
column on an elastic plate. This benchmark was first proposed by Fourey
et al. (2017), and was extended for energy analysis (Khayyer et al.,
2018) and three-dimensional scenarios (Khayyer et al., 2022b). Fig. 26
presents the schematic of the numerical model in the present study. A
water column of 0.6 m in height and 0.4 m in length is placed on a
both-end-clamped elastic plate with a thickness of 0.04 m. There is a
deflection probe at the midpoint of the plate. Other parameters for
simulation are listed in Table 7.

Fig. 27 presents the displacement time histories of the P probe. The
analytical solution is obtained via the classical plate theory, and the
detailed derivation process can be found in the literature (Khayyer et al.,
2022b). Specifically, the maximum deflection at the midpoint of the
elastic plate is 1.14 x 10~®m. It can be noticed that the numerical
simulation results converge to the analytic solution as the PD resolution
increases. When dp/dx = 1.5, the numerical results obtained by MPS-PD
are closest to the analytic solution, and the deflection at the midpoint of
the plate is 1.19 x 10~%m. The pressure/stress fields at t = 4.0 s repro-
duced by the MPS-PD are shown in Fig. 28. It can be observed that the
pressure/stress fields are very smooth, without the occurrence of
non-physical oscillations.

The energy conservation of the entire FSI system is further evaluated.
The formulation of each energy component can be expressed as:

Er =E; +E& (37)

where Ef. denotes the total energy of the fluid field, which is composed of
the kinetic energy EY and potential energy EL of the fluid, and is

Fig. 40. Schematic of the numerical model - fracture of a hanging plate with a
prefabricated crack induced by the dam-break flow.
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expressed as:

E =Ef +E (38)

1
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Fig. 29 shows the time histories of normalized total energies. It can
be observed that the curves under different PD resolutions maintain
consistency. This is because the loss of total energy is mainly dominated
by the gravitational potential energy of the fluid (Khayyer et al., 2018;
Zhang et al., 2022a), while the MPS resolution is kept constant in this
case study. It can be observed that the energy loss curve oscillates
initially and eventually stabilizes at a constant value of —0.00177. In
general, the MPS-PD solver exhibits good energy conservation
performance.

3.3.3. Deformation of a hanging elastic plate induced by the dam-break
flow

In this section, the MPS-PD solver is further validated by simulating
the process of dam-break flow impacting a hanging elastic plate, which
was experimentally investigated by Yilmaz et al. (2021). Fig. 30 presents
the schematic of the numerical model. The length, width, and height of
the numerical water tank are 1.58 m, 0.05 m, and 0.3 m, respectively. A
water column with a length of 0.1 m, a width of 0.05 m, and a height of
0.2 mis located on the left side of the water tank. There is an elastic plate
suspended from a rigid wall, 0.8 m away from the left wall of the nu-
merical water tank, and the elastic plate’s free end is 0.025 m above the
tank’s bottom. The elastic plate has a width of 0.05 m, a height of 0.125
m, and a thickness of 0.007 m. Other parameters for simulation are listed
in Table 8.

Fig. 31 shows the flow morphologies and the deformations of the
elastic plate at different times. The deformation of the elastic plate in-
creases rapidly under the first impact of the dam-break flow, and then
decreases quickly under the action of the restoring force. As the fluid
accumulates on the left side of the elastic plate, its deformation increases
again, and finally decreases gradually. It can be observed that both the
shape of the dam-break flow and the deformation of the elastic plate
simulated by MPS-PD are in good agreement with the experimental re-
sults. Furthermore, both the pressure distribution of the flow field and
the stress distribution of the structure are very smooth and continuous
without any non-physical oscillations.

Fig. 32 presents horizontal displacement time histories at different
probes obtained by experiment (Yilmaz et al., 2021), 2D SPH-SPH
(Meng et al., 2022), 2D SPH-PD (Liang et al., 2025a), 3D SPH-FEM
(Chen et al., 2025), and the present 3D MPS-PD. It can be noticed that
the displacement curves have two peaks, which is consistent with the
phenomenon observed in Fig. 31. The displacement time histories ob-
tained by the MPS-PD method are in good agreement with the experi-
mental displacement time histories and those from other numerical
methods in terms of peak values and overall trends.

Fig. 33 shows the MPS structural models and the PD structural

Table 10
Parameters in the simulation - fracture of a hanging plate with a prefabricated
crack induced by dam-break flow.

MPS parameters Values PD parameters Values
Density (kg/m®) 1000 Density (kg/m®) 800
Initial particle spacing 1.25 x Initial particle spacing (m) 1.0 x
(m) 1073 1073
Viscosity (Pa-s) 8.9x 1073 Young’s modulus (Pa) 9.7 x 10°
Time step (s) 25x%x 1074 Poisson’s ratio 0.17
- - Critical energy release rate 3.56
(J/m?)
- - Critical bond stretch ratio sy 0.01
- Time step (s) 5.0 x
106
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Fig. 41. Dam-break flow morphologies and structural damage produced by present 3D MPS-PD (Lpc = 0.04 m) - facture of a hanging plate with a prefabricated crack
induced by the dam-break flow.

Fig. 42. Dam-break flow morphologies and structural damage obtained under different solid conditions at t = 0.2 s (Lpc = 0.04 m) - fracture of a hanging plate with
a prefabricated crack induced by the dam-break flow.
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Fig. 43. Dam-break flow morphologies and structural damage obtained under different lengths of prefabricated cracks at t = 0.2 s - fracture of a hanging plate with

aprefabricated crack induced by the dam-break flow.
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Fig. 44. Final crack lengths versus different prefabricated crack lengths -
fracture of a hanging plate with a prefabricated crack induced by the dam-
break flow.

models with different resolutions at the same time. It can be observed
that the deformations of the two models maintain consistency, and the
pressure on the MPS models corresponds accurately to the stress in the
PD models. KFBI exhibits high accuracy in fluid-structure interpolation
within the MPS-PD solver.
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3.3.4. Fracture of an elastic baffle induced by the dam-break flow

Fracture of an elastic baffle induced by dam-break flow is investi-
gated in this section. The schematic of the numerical model is presented
in Fig. 34. There is a water tank with a length of 0.584 m, a width of 0.06
m, and a height of 0.438 m. A water column with a length of 0.146 m, a
width of 0.06 m, and a height of 0.292 m is on the left side of the water
tank. There is an elastic baffle with a height of 0.08 m, a width of 0.04 m,
and a thickness of 0.0012 m located at the center of the bottom of the
water tank. The bottom of the elastic baffle is rigidly fixed to the water
tank, while its top is a free end. Other parameters are listed in Table 9.

Firstly, a numerical simulation is conducted on the case without
elastic baffle fracture, and the value of the critical bond stretch ratio s is
set to 1.0. The snapshots of the present numerical results are compared
with those simulated by 2D SPH-FPM (Liu et al., 2020), as shown in
Fig. 35. The simulation results demonstrate the key processes of
dam-break flow—elastic baffle interaction, the deformation of the elastic
baffle, the formation of an obvious tongue jet, and the subsequent jet
impacting the rigid wall. The deformation of the elastic baffle and the
shape of the free liquid surface obtained using 2D SPH-FPM and the
present 3D MPS-PD are both in good agreement with each other.
Furthermore, both the pressure distribution of the flow field and the
stress distribution of the structure obtained by the proposed 3D MPS-PD
solver are very smooth.

Horizontal displacement time histories of probe A among the nu-
merical results obtained by 2D PFEM (Idelsohn et al., 2008), 2D
SPH-FPM (Liu et al., 2020), 2D SPH-FEM (Long et al., 2016), 2D SFEM
(Zhang et al., 2019), 3D SPH-PD (Dai et al., 2023), and the present 3D
MPS-PD are presented in Fig. 36. Overall, the time histories obtained by
different methods follow similar trends. Upon the contact of the
dam-break flow with the baffle, negative displacement can be observed.
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When t < 0.6 s, the rate of displacement increase, the magnitude of its
peak value, and the rate of displacement decrease obtained by different
methods are in good agreement. When t > 0.6 s, the back-and-forth
deformation of the elastic baffle can also be well captured by different
numerical methods.

Then, the fracture of the elastic baffle induced by dam-break flow is
simulated by the present 3D MPS-PD, and the value of the critical bond
stretch ratio sq is set to 0.127. The dam-break flow morphologies and
structural damage is presented in Fig. 37. Under the impact of the dam-
break flow, the baffle deforms, and the stress at its ends increases
gradually. When the deformation of the baffle reaches a certain extent,
cracks start to appear at the fixed end of the baffle. With the continuous
action of the dam-break flow, the cracks gradually expand, and finally
the baffle detaches from the fixed end. It can be seen that the shape of
the jet is obviously different from that in the case without baffle fracture.
Although the baffle fractures rapidly and causes significant disturbance
to the flow field, the pressure field remains relatively smooth, without
non-physical oscillations, which further demonstrates the stability of the
3D MPS-PD method.

Fig. 38 plots vertical displacement time histories of the probe P2
obtained by numerical methods in the fracture case. Overall, the
movement of the baffle produced by the present 3D MPS-PD agrees well
with that by other methods. Furthermore, the numerical results under
different resolutions are almost identical, which demonstrates that the
KFBI technique can also maintain high interpolation accuracy in fracture
problems. Displacement changes induced by fracture and contact are
further presented in Fig. 39. When the baffle shows no damage, the
displacements in the non-fracture case and those in the fracture case
remain consistent. At t = 0.207 s, when the two curves separate, this
indicates the occurrence of damage. At t = 0.301 s, the baffle exhibits
reverse movement, indicating that it comes into contact with the wall.
After multiple contacts with the bottom of the water tank, the
displacement of the baffle stabilizes around a constant value. When t >
0.45 s, the minor fluctuations in the displacement time histories are
caused by fluid flow. The displacement of the P2 should be equal to the
height of the P2 minus half of the baffle’s thickness, which corresponds
to the analytic solution. It can be observed that the maximum
displacement obtained by the MPS-PD method is almost consistent with
the analytic solution. The contact model adopted by the 3D MPS-PD
solver is accurate and reliable.

3.3.5. Fracture of a hanging plate with a prefabricated crack induced by the
dam-break flow

In this section, the proposed 3D MPS-PD solver is employed to
investigate the interaction between dam-break flow and a vertically
hanging plate with a prefabricated crack. The schematic of the numer-
ical model is presented in Fig. 40. There is a water tank with a length of
0.5 m and a width of 0.1 m. A water column with a length of 0.04 m, a
width of 0.05 m, and a height of 0.14 m is on the right side of the water
tank. A hanging elastic plate with a width of 0.1 m, a height of 0.079 m,
and a thickness of 0.005 m is located 0.1 m away from the right wall of
the water tank. The top of the plate is the fixed end, and the bottom is the
free end. There is a horizontal prefabricated crack on the plate, which is
0.04 m away from the bottom of the water tank. Other parameters can be
found in Table 10.

Fig. 41 shows the dam-break flow morphologies and structural
damage when the length of the prefabricated crack (Lpc) is 0.04 m. It can
be observed that at t ~ 0.115 s, the fracture initiates first from the tip of
the prefabricated crack, and this new crack formed by the fracture is
referred to as Crack A. At t ~ 0.12 s, a new Crack B initiates on the right
side near the fixed end of the plate and propagates toward the left. At t =~
0.125 s, Crack A has traversed the entire plate, and a fragment detaches
around the height of the prefabricated crack. Subsequently, some fluid
climbs up along the fragment and forms a jet flow, which impacts the
fracture surface of the remaining part of the plate at t = 0.18 s. It can be
observed that due to the presence of the plate, the trajectory of the jet
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flow changes, and no obvious particle penetration phenomenon is
observed, which indicates that the fracture surface treatment method in
the 3D MPS-PD method is reliable.

Fig. 42 presents dam-break flow morphologies and structural dam-
age obtained under different boundary conditions. The DEM contact
model is utilized in the case with solid boundary, while it is not
employed in the case without solid boundary. It can be seen that in the
case without a solid boundary, a part of the fragments is located outside
the water tank, which is inconsistent with reality. Besides, in this case
without solid boundary, the length of Crack B (Ic = 0.073m) is
significantly longer than that (L = 0.067m) in the case with a solid
boundary. This is because without the constraint of the solid boundary,
the plate can undergo greater torsional deformation. In conclusion, the
DEM contact model adopted in this study is effective.

Fig. 43 and Fig. 44 compare the influence of the prefabricated crack
lengths on structural damage. It can be seen that as the prefabricated
crack length increases, the length of Crack A increases, while that of
Crack B decreases. It is worth noting that when Lpc = 0.03 m, both
Crack A and Crack B eventually traverse the entire plate. However, the
fragments only detach around the height of the prefabricated crack
rather than from the ends of the plate. When Lpc > 0.03 m, the frag-
ments detach near the height of the prefabricated crack, whereas when
Lpc < 0.03 m, they detach near the ends of the plate.

In general, the 3D MPS-PD method is capable of reasonably pre-
dicting structural fracture behavior in violent FSI problems.

4. Conclusions and prospects

In this paper, a 3D multi-resolution MPS-PD method is proposed to
solve violent FSI problems involving structural deformation and frac-
ture. Fluid pressure on the structural surface is transmitted from MPS
wall particles to PD surface particles, while displacements and velocities
are transmitted from PD structural particles to MPS structural particles.
Besides, the KFBI technique is incorporated into the MPS-PD solver,
enabling the flow field and structural field to be simulated at different
resolutions.

Firstly, the accuracy of MPS solver is evaluated by simulating dam-
break flow impacting a fixed square obstacle.

Secondly, the PD-based structural solver is validated by simulating
several 3D benchmark tests, including an oscillating cantilever plate, a
clamped-clamped beam under uniform load, the Kalthoff-Winkler
impact test, and three-point bending of an ice beam. The displacement
time histories of the structures at various resolutions exhibit good
agreement with the analytic solutions, demonstrating good convergence
performance of the developed PD solver. Furthermore, the stress fields
exhibit spatial continuity and smoothness. In problems involving frac-
ture, the cracks obtained from the simulations show good agreement
with those from other numerical methods as well as experimental re-
sults; meanwhile, the energy dissipation caused by computational errors
is relatively small, further confirming the accuracy of the developed PD
solver.

Subsequently, the MPS-PD solver is utilized to investigate FSI prob-
lems, such as the flood discharge with an elastic plate, the hydrostatic
water column on an elastic plate, the dam-break flow with a hanging
elastic plate, and the dam-break flow with an elastic obstacle. The in-
fluence of the interpolation radius on computational results is evaluated.
For different diameter ratios between fluid and structure particles, the
simulated structural dynamic responses exhibit high consistency, con-
firming the accuracy of the interpolation method. Moreover, its results
are in good agreement with the experimental results as well as those
from other numerical methods. Furthermore, the FSI solver exhibits high
energy conservation performance. Overall, the developed 3D MPS-PD
solver is capable of accurately solving 3D FSI problems.

Finally, the MPS-PD solver is employed to investigate the dam-break
flow impacting a hanging elastic plate with a prefabricated crack. Nu-
merical results indicate that the length of prefabricated cracks exerts a
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significant influence on the extent of structural damage.

The PD model used in the present paper applies only to linear elastic
materials; it therefore needs to be extended to plastic and composite
materials for practical marine engineering applications, such as offshore
platforms or ship hull fracture analysis (Pirzadeh et al., 2024, 2025). To
further improve the accuracy of MPS-PD model, the adaptive refinement
technique should be introduced to better simulate the interaction be-
tween fluid and fractures during the fracture process. Furthermore,
integrating multi-GPU acceleration technology into the MPS-PD solver
will enable tackling of more complex marine engineering problem-
s—such as ship-water-ice interaction, a scenario that requires repeated
establishment of PD neighbor particles and thus consumes considerable
computational time.
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