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A B S T R A C T

In this paper, an in-house solver MPSPD-SJTU is developed to address 3D Fluid-Structure Interaction (FSI) 
problems with fracture. The Moving Particle Semi-implicit (MPS) method is utilized to simulate the violent free- 
surface flows while the PeriDynamics (PD) method is employed to model the structures with large deformations 
and fractures. Besides, a Kernel Function Based Interpolation Technique (KFBI) is incorporated into the coupling 
method to handle the MPS particles and PD particles with different resolutions. Firstly, the MPS solver is utilized 
to simulate dam break flow impacting a fixed obstacle, serving to evaluate its accuracy and reliability. Subse
quently, the PD-based structural solver is validated by simulating an oscillating cantilever plate, a clamped- 
clamped elastic beam under uniformly distributed load, the Kalthoff-Winkler impact test, and three-point 
bending of an ice beam. Next, the MPS-PD model is validated via some benchmark tests, such as flood 
discharge with an elastic plate, hydrostatic water column on an elastic plate, dam-break flow with a hanging 
elastic plate, as well as dam-break flow with an elastic obstacle. The numerical results obtained in this study 
exhibit good agreement with experimental data as well as those from other numerical methods. Finally, the 
coupling model is applied to investigate the dam-break flow impacting a hanging elastic plate with a pre
fabricated crack.

1. Introduction

Fluid-structure interaction phenomena are quite common in the field 
of ocean engineering. For instance, waves slamming on offshore struc
tures (Fimreite et al., 2025; Zhao et al., 2024; Zhuang et al., 2023), 
liquid sloshing in transport vessels (Huang et al., 2023, 2024a; Xie et al., 
2020), and the impact of tsunamis on nearshore structures (Iwamoto 
et al., 2019) are typical examples. The hydrodynamic loads in the ocean 
typically exhibit characteristics such as strong nonlinearity, dynamic 
behavior, and randomness, which may cause significant deformation 
and even fracture of structures. Therefore, it is essential to conduct 
research on these multi-physics interaction problems, so as to better 
understand and address these potential structural risks.

Experimental methods are reliable and provide irreplaceable vali
dation for such problems. However, experiments incur high costs, 
require long lead times, and have limitations in simulating extreme 
scenarios. As effective supplements, numerical simulations reduce 
research expenses, enable flexible parameter adjustment and repeated 

testing, and safely explore extreme conditions, thus making them 
necessary.

According to the coupling strategies of FSI, numerical methods can 
be classified into the monolithic and partitioned approaches (Hwang 
et al., 2014). The monolithic approaches integrate the governing equa
tions of the fluid and structural fields into a unified system of equations 
(Idelsohn et al., 2008). They simultaneously solve fluid variables (e.g., 
velocity, pressure) and structural variables (e.g., displacement, stress) 
through unified discretization schemes, directly reflecting the instanta
neous FSI. Partitioned approaches treat the fluid field and solid field as 
independent systems, and then transfer information via inter
polation/mapping algorithms at the fluid-structure interface (Li et al., 
2015). The former exhibits superior stability and higher accuracy at the 
interface, while the latter possesses greater flexibility, higher compu
tational efficiency, and ease of coupling different types of mature 
single-field solvers. Owing to these advantages, partitioned approaches 
are more suitable for solving engineering problems and have attracted 
extensive attention in the academic community in recent years.
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In partitioned approaches, different fields can be solved using their 
respective optimal numerical methods. Grid-based methods have rela
tively mature theories. They are characterized by high precision and 
strong stability. However, when facing intense flows (e.g., dam-break 
flows, wave slamming), meshes are easily distorted. As a consequence, 
computational accuracy is sharply reduced, and calculations may even 
be terminated. For this reason, frequent mesh reconstruction is required, 
which in turn increases complexity and computational costs. Particle- 
based methods, by contrast, are naturally suited to handling problems 
such as large deformations of free surfaces and moving boundaries (Xie 
et al., 2022). Although particle-based methods suffer from inherent is
sues such as low accuracy and poor stability in certain scenarios, many 
enhancement techniques have been proposed to improve their perfor
mance. For instance, the gradient model of momentum conservation 
(Tanaka and Masunaga, 2010) and the Particle Shifting Technique (PST) Fig. 1. Schematic of the free surface detection.

Fig. 2. Schematic of the KFBI technique.

Fig. 3. Schematic of particle processing near the fracture surface.
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Fig. 4. Flowchart of the MPS-PD solver.
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(Duan et al., 2018; Gao and Fu, 2023; Gotoh et al., 2024; Khayyer et al., 
2023; Zhan et al., 2025a) have been proposed to prevent particles from 
aggregating. The mixed gradient model (Huang et al., 2022; Sun et al., 
2018, 2019), also known as Tensile Instability Control (TIC), has been 
developed for simulating high Reynolds number flows involving nega
tive pressure. Additionally, high-order schemes (Khayyer and Gotoh, 
2011, 2012; Liu et al., 2019, 2025; Wang et al., 2023) have also been 
proposed to improve the accuracy of the model.

The Finite Element Method (FEM) is relatively mature and is often 
used to verify the accuracy of other structural analysis methods, which 
has been coupled with two widely used particle-based methods: the 
Smoothing Particle Hydrodynamics (SPH) and Moving Particle Semi- 
implicit (MPS). These coupling methods have been employed to inves
tigate complicated FSI problems, such as ship hull water entry (Chen 
et al., 2025), wave-structure interaction (Ma et al., 2020; Zhang et al., 

2022b), sloshing flow-structure interaction (Zhang and Wan, 2018), etc. 
However, it is difficult for FEM to handle crack-tip singularities and 
accurately predict crack propagation paths.

Compared with the FEM, meshfree methods such as SPH and MPS do 
not rely on fixed mesh elements when handling large deformation 
problems. This fundamentally avoids the risk of mesh distortion and the 
need for remeshing, ensuring the stability and efficiency of the 
computation process. Both elastic structures and flow fields can also be 
modelled with SPH or MPS (Gotoh et al., 2021, 2025; Khayyer et al., 
2022a; Zhan et al., 2025b). In order to improve the accuracy of the 
particle-based structural model, high-order schemes for the discretiza
tion of the deformation gradient tensor have been developed (Khayyer 
et al., 2024; Shimizu et al., 2022). Besides, the Riemann stabilization 
schemes (Khayyer et al., 2024; Shimizu et al., 2022) and hourglass 
control schemes (Wu et al., 2024; Zhan et al., 2025c; Zhang et al., 2025) 
have been introduced to the particle-based structural model to enhance 
the stability of the FSI solver. Models based on SPH or MPS have also 
been successfully extended to simulating problems such as the defor
mation of composite structures (Khayyer et al., 2021b, 2022b) and 
structural fracture, even though their ability to capture fracture details 
remains limited (Ren and Park, 2023; Singh et al., 2025). Ordinary SPH 
or MPS methods are essentially rooted in continuum mechanics, and 
their assumptions of continuity, reliance on partial differential equa
tions (PDEs), and logic of local action conflict with the intrinsic features 
of fracture — discontinuity, singularity, and non-locality.

Fig. 5. Schematic of the numerical model - dam break flow impacting a fixed square obstacle.

Table 1 
Parameters in the simulation - dam-break flow impacting a fixed square 
obstacle.

MPS parameters Values

Density (kg/ m3) 1000
Initial particle spacing (m) 0.0183,0.025,0.05
Viscosity (Pa⋅ s) 8.9× 10− 5

Time step (s) 5.0× 10− 4
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 MPS solver (dp = 0.05 m)
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Fig. 6. Comparison of pressure time histories at P1 among the results obtained 
by experiment (Kleefsman et al., 2005), SPH (Sun et al., 2015), and MPS with 
different resolutions - dam-break flow impacting a fixed square obstacle.
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Fig. 7. Comparison of wave height time histories at H1 among the results 
obtained by experiment (Kleefsman et al., 2005), SPH (Sun et al., 2015), and 
MPS with different resolutions - dam-break flow impacting a fixed 
square obstacle.
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In recent years, a novel method—PeriDynamics (PD)—has been 
proposed by Silling (2000). Notably, this method employs integral 
equations to eliminate fracture singularities, achieves natural fracture 
through material point bonds, adapts to damage via non-locality, and 
enables efficient computation via a meshless framework. Its inherent 

alignment with the nature of fracture endows it with unique advantages. 
Scholars have adopted the Immersed Boundary Method (IBM) to achieve 
the coupling of PD and grid-based methods (Dalla Barba et al., 2022; 
Yang et al., 2022). In contrast, PD and other particle-based methods 
possess an intrinsic compatibility advantage. PD has also been coupled 
with SPH for the simulation of violent FSI problems with large defor
mation of the free surface. Huang et al. (2024b) proposed a coupled 
SPH-PD model and applied it to simulate dam failure induced by 

Fig. 8. Comparison of the dam-break flow morphologies between experimental snapshots (Kleefsman et al., 2005) and numerical results obtained by the MPS - 
dam-break flow impacting a fixed square obstacle.

Fig. 9. Schematic of the numerical model - dynamic response of an oscillating 
cantilever beam.

Table 2 
Parameters in the simulation - dynamic response of an oscillating cantilever 
beam.

PD parameters Values

Density (kg/ m3) 1000
Initial particle spacing (m) 2× 10− 3,1× 10− 3,6.67× 10− 4

Young’s modulus (MPa) 2.0
Poisson’s ratio 0.4
Time step(s) 5.0× 10− 6
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Fig. 10. Comparison of vertical displacement time histories between the ana
lytic solution and PD results with different resolutions - dynamic response of an 
oscillating cantilever beam.

F. Xie et al.                                                                                                                                                                                                                                       Ocean Engineering 343 (2026) 123345 

5 



underwater explosions (Huang et al., 2025b) and soil fragmentation 
induced by buried explosions (Huang et al., 2025a). Yao and Huang 
(2022) also developed a SPH-PD model, which is employed to study 
water-jetting-induced rock fragmentation phenomena. A 
multi-resolution technique has also been introduced to this SPH-PD 
model (Yao and Huang, 2022). Liang et al. (2025b) established a 3D 
ice tank based on the SPH-PD model. SPH-PD models are also utilized to 

Fig. 11. The stress distribution of the cantilever beam at t = 0.57s - dynamic response of an oscillating cantilever beam.

Fig. 12. Schematic of the numerical model - static deflection of a clamped- 
clamped elastic beam under uniform load.

Table 3 
Parameters in the simulation - static deflection of a clamped-clamped elastic 
beam under uniform load.

PD parameters Values

Density (kg/ m3) 1000
Initial particle spacing (m) 1× 10− 3,8× 10− 4,6.67× 10− 4

Young’s modulus (Pa) 2.4× 107

Poisson’s ratio 0.25
Time step(s) 5.0× 10− 6

Fig. 13. Comparison of vertical displacement time histories between the ana
lytic solution and PD results with different resolutions - static deflection of a 
clamped-clamped elastic beam under uniform load.

Fig. 14. The stress distribution of the beam after reaching steady state - static deflection of a clamped-clamped elastic beam under uniform load.

Fig. 15. Schematic of the numerical model - Kalthoff-Winkler impact test.

Table 4 
Parameters in the simulation - Kalthoff-Winkler impact test.

PD parameters Values

Density (kg/m3) 8000
Initial particle spacing (m) 1× 10− 3

Young’s modulus (Pa) 1.91× 1011

Poisson’s ratio 0.25
Critical energy release rate (J/m2) 6.91× 104

Critical stretch s0 0.01
Time step(s) 1.0× 10− 7
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simulate the dynamic responses of sea ice cantilever beams (Cao et al., 
2024) and hydro-elastic water entry (Jing et al., 2024). These studies 
fully demonstrate the feasibility of coupling particle-based fluid 
methods (e.g., SPH) with PD for fracture-related FSI problems. However, 
in the above-mentioned SPH-PD methods, the numerical instability and 
pressure oscillations of the traditional Weakly Compressible SPH 
(WCSPH) method used to simulate fluids cannot be ignored, which may 

significantly affect the initiation and propagation of cracks.
Notably, the incompressible MPS method exhibits high stability in 

simulating violent flow processes — a key advantage for ensuring ac
curate fluid load transfer in FSI problems involving fracture. However, 
there are few studies on coupling MPS with PD, especially for 3D FSI 
problems involving structural fracture. Considering the high computa
tional cost inherent in 3D FSI numerical simulation, another 

Fig. 16. Crack path reproduced by BB-PD and OSB-PD - Kalthoff-Winkler impact test.

Fig. 17. Damage process simulated by OSB-PD - Kalthoff-Winkler impact test.
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contribution of this study is to introduce KFBI into the MPS-PD model to 
achieve multi-resolution simulation.

The remaining parts of this study are organized as follows: Section 2
briefly introduces the improved MPS method, the PD method and their 
coupling algorithm. Section 3 validates the numerical model through 
several benchmarks and presents the numerical results of FSI problems 
with fracture. Section 4 presents the concluding remarks and future 
perspectives.

2. Numerical methods

2.1. MPS method for fluid simulation

The MPS method was first proposed by Koshizuka and Oka (1996)
and was initially designed for simulating viscous and incompressible 
fluids. Its governing equations comprise the mass conservation equation 

and the momentum conservation equation, which are given as follows: 

Dρf

Dt
+ ρf∇⋅v = 0 (1) 

ρf
Dv
Dt

= − ∇P + μf∇
2v + ρf g (2) 

where subscript f denotes the MPS fluid particle; ρf , t, v, P, μf , g repre
sent density, physical time, velocity vector, pressure scalar, dynamic 
viscosity and gravitational acceleration vector, respectively.

The degree of interaction among MPS particles depends on the kernel 
function w(r). The kernel function proposed by Zhang et al. (2014), 
which can significantly suppress non-physical pressure oscillations, is 
employed. Its specific form is given by: 

w(r) =

⎧
⎪⎨

⎪⎩

re

0.85r + 0.15re
− 1 0 ≤ r < re

0 r ≥ re

(3) 

where r is the distance between two MPS particles, and re is the influence 
radius. Specifically, re is set to 2.01 r0 for the gradient model and 4.1 r0 
for the Laplacian model, where r0 is the initial particle spacing.

To approximate physical interactions between particles, numerical 
constructs such as gradient, divergence, and Laplacian models are 
employed as discrete operators in the particle method. Their specific 
definitions are given by: 

〈∇ϕ〉i =
d
n0

∑

j∕=i

ϕj + ϕi
⃒
⃒rj − ri

⃒
⃒2

(
rj − ri

)
w
( ⃒
⃒rj − ri

⃒
⃒
)

(4) 

〈∇⋅Φ〉i =
d
n0

∑

j∕=i

(
Φj − Φi

)
⋅
(
rj − ri

)

⃒
⃒rj − ri

⃒
⃒2

w
( ⃒
⃒rj − ri

⃒
⃒
)

(5) 

〈∇2ϕ〉i =
2d
n0λ

∑

j∕=i

(
ϕj − ϕi

)
w
( ⃒
⃒rj − ri

⃒
⃒
)

(6) 

λ =

∑

j∕=i
w
( ⃒
⃒rj − ri

⃒
⃒
)⃒
⃒rj − ri

⃒
⃒2

∑

j∕=i
w
( ⃒
⃒rj − ri

⃒
⃒
) (7) 

where subscript i and j denote particle i and its neighbor particle j, ϕ is 
the physical scalar of MPS particles, r is the position vector relative to 
the origin, Φ is the physical vector, d is the number of space dimensions, 
n0 is the initial particle density, λ is a parameter that serves to ensure the 
increase in variance matches the analytical solution.

For the MPS method, the pressure field is obtained by solving the 
Poisson Pressure Equation (PPE). The present work adopts the mixed 
source term method (Khayyer and Gotoh, 2011; Tanaka and Masunaga, 
2010), which balances both stability and accuracy, and its expression is 
given by: 

〈∇2pk+1〉i = (1 − γ)
ρf

Δt
∇⋅u*

i − γ
ρf

Δt2
〈nk〉i − n0

n0
(8) 

where pk+1 is the pressure at step k+ 1, Δt is the time step, u*
i is the 

intermediate velocity, 〈nk〉i is the intermediate particle density, and γ is a 
blending parameter, with its value set to 0.01 in the present work.

The free surface detection method, which relies on the asymmetric 
distribution of neighboring particles, is adopted in the present work, 
given by: 

< n>*
i < βn0 (9) 

〈F〉i =
d
n0

∑

j∕=i

(
rj − ri

)

⃒
⃒rj − ri

⃒
⃒
w
( ⃒
⃒rj − ri

⃒
⃒
)

(10) 

Fig. 18. Schematic of the numerical model - three-point bending of an 
ice beam.

Table 5 
Parameters in the simulation - three-point bending of an ice beam.

PD parameters Values

Density (kg/m3) 900
Initial particle spacing (m) 5× 10− 3

Young’s modulus (Pa) 6.83× 109

Poisson’s ratio 0.3
Critical energy release rate (J/ m2) 19.0
critical bond stretch ratio s0 3.9× 10− 4

Time step(s) 2.0× 10− 6

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025
-200
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 Present OSB-PD (VL=-0.005 m/s)

Fig. 19. Comparison of force - displacement relationship among the results 
obtained by experiment(Xue et al., 2018), BB-PD (Xue et al., 2018), and present 
OSB-PD with different force loading rates - three-point bending of an ice beam.
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〈F〉i > α
⃒
⃒F0⃒⃒ (11) 

where F is defined as the vector that characterizes the asymmetric dis
tribution of MPS neighboring particles, and 

⃒
⃒F0⃒⃒ is defined as the 〈F〉i 

value corresponding to the initial distribution of internal fluid particles. 
Parameters β and α are assigned values of 0.8 and 0.9, respectively. 
Fig. 1 presents the schematic of the free surface detection. It can be 
observed that when fluid particles are inside the fluid, the 〈F〉i is 

relatively small due to the relatively uniform distribution of surrounding 
particles. In contrast, when fluid particles are on the free surface, there 
are no particles outside the free surface, and this uneven distribution 
leads to a significantly larger value of 〈F〉i.

The time step of the MPS method needs to satisfy the Courant- 
Friedrichs-Lewy (CFL) condition, which is given by: 

Δtmps <
Cdp
vmax

(12) 

where Δtmps and dp represent the time step of the MPS method and the 
initial particle spacing, respectively. vmax represents the maximum ve
locity of the field, and for dam-break cases, it is generally estimated to 
take the form vmax =

̅̅̅̅̅̅̅̅
2gh

√
. C is set to 0.5 in this study.

2.2. Ordinary state-based PD for structure simulation

PD is mainly categorized into three types: Bond-Based PD (BB-PD), 
Ordinary State-Based PD (OSB-PD), and Non-Ordinary State-Based PD 
(NOSB-PD). BB-PD, which is the simplest model, relies on pairwise 
particle bonds but suffers from a fixed Poisson’s ratio (0.25) for isotropic 
materials and limited applicability to only brittle materials, restricting 
its engineering utility. While NOSB-PD suffers from zero-energy modes 
and numerical instability generated by non-local deformation gradient 
computation. In contrast, OSB-PD achieves an optimal balance between 
adaptability, simulation precision, and result stability—making it 
particularly suited for this study’s focus on analyzing fluid-fracture 
coupling problems (Li et al., 2022).

The equation of motion for PD particles in structures is derived based 
on Newton’s second law, expressed as: 

ρaüa =

∫

Rδ

[Ta[xa, t]〈xb − xa〉 − Tb[xb, t]〈xa − xb〉]dVb + ρag +
Fext

a
Va

(13) 

Fig. 20. Fracture process of ice beam simulated by PD (VL = − 0.01 m/s) - three-point bending of an ice beam.
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Fig. 21. Time histories of different energies (VL = − 0.01 m/s) - three-point 
bending of an ice beam.

Fig. 22. Schematic of the numerical model - deformation of an elastic gate 
induced by flood discharge.

Table 6 
Parameters in the simulation - deformation of an elastic gate induced by flood 
discharge.

MPS parameters Values PD parameters Values

Density (kg/m3) 1000 Density (kg/m3) 1100
Initial particle 

spacing (m)
1.25×

10− 3
Initial particle 
spacing (m)

1.25× 10− 3, 1.0×

10− 3, 
8.33× 10− 4, 6.25×

10− 4

Viscosity (Pa⋅s) 8.9×

10− 5
Young’s modulus 
(Pa)

8.0× 106

Time step (s) 2.5×

10− 4
Poisson’s ratio 0.4

– – Time step (s) 5.0× 10− 6
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where subscripts a and b denote the PD structural particles, üa is the 
acceleration vector, x is the initial relative position, the Rδ is the influ
ence region of PD particles, defined as Rδ = {xb : |xb − xa|< δ} with δ 
being 3.015dx in the present work. T denotes the force density vector, V 
is the volume of PD particle, ρag is the body force per unit volume, Fext

a is 
external force exerted on the PD particles, consisting of fluid force and 
boundary force in this study.

The force density vector T is given by: 

T[xa, t]〈xb − xa〉 = t[xa, t]〈xb − xa〉M (14) 

where t is the force density scalar state, and M is the unit deformation 
vector state. In 3-D problems, their specific expressions are given by: 

t[xa, t]〈xb − xa〉 = 3kʹwx
m

θ + αwed (15) 

M =
(xb − xa) + (ub − ua)

|(xb − xa) + (ub − ua)|
(16) 

where kʹ and α are positive constants, w is the influence function and w =

(

1 −
(xb − xa)

2

δ2

)2 

(Huang et al., 2015) is employed in the present study, m 

is the weighted volume, θ and ed are the volume dilatation and devia
toric extension state, u is the displacement vector of a PD particle. In 3D 
problems, the parameters mentioned above can be given by: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kʹ = k,α =
15μ
m

m =

∫

Rδ

w‖xb − xa‖
2dVb

θ =
3
m

∫

Rδ

(wxe)dVb, ed = e −
θx
3

(17) 

where k and μ represent the bulk modulus and shear modulus of the 
material, respectively, e is the elongation scalar state(Yao et al., 2023), 
expressed as: 

e = y〈xb − xa〉 − x〈xb − xa〉 (18) 

Fig. 23. Comparison of displacement time histories among the results obtained by experiment (Antoci et al., 2007), ISPH-SPH (Khayyer et al., 2018), and MPS-PD 
with different interpolation radii (dp/dx = 1.5) - deformation of an elastic gate induced by flood discharge.

Fig. 24. Comparison of displacement time histories among the results obtained by experiment (Antoci et al., 2007), ISPH-SPH (Khayyer et al., 2018), and MPS-PD 
with different resolutions (rei = 2dp) - deformation of an elastic gate induced by flood discharge.
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where x and y are the initial distance and the current distance between 
neighboring particles, respectively.

When the bond length between neighboring PD particles exceeds the 
critical value s0, the force density generated by their interaction will 
disappear, which is an irreversible process. The function φab, which is 
utilized to describe the interaction state between neighboring PD par
ticles, is given by: 

φab =

{
1, if s < s0

0, elsewhere
(19) 

where s is the scalar bond stretch between neighboring PD particles, 
which is given by, 

s =
|(xb − xa) + (ub − ua)| − |(xb − xa)|

|(xb − xa)|
(20) 

The critical stretch s0 (Madenci and Oterkus, 2014) is given by: 

s0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
G0

(

3μ +

(
3
4

)4(

k −
5
3

μ
))

δ

√
√
√
√
√ (21) 

Fig. 25. Comparison of the discharge flood morphology and structural deformation between experimental snapshots (Antoci et al., 2007) and numerical results 
obtained by the present 3D MPS-PD solver-deformation of an elastic gate induced by flood discharge.
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where G0 is the critical energy release rate of the material and δ is the 
horizon.

The selection of PD time step follows the critical value proposed by 
Zhang and Qiao (2020), given by: 

ΔtPD <

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2ρs

/(
∑

b∈Ωa

2αwVb

)√
√
√
√ (22) 

where ΔtPD is the time step of PD simulation.

2.3. Coupling of MPS and PD

In the MPS model, solid boundaries are composed of multiple layers 
of particles (Xie et al., 2021a). Among these, the pressure of the outer
most layer particles (wall particles) that are adjacent to the fluid is ob
tained by solving the PPE (Zhang and Wan, 2017). For MPS-PD coupling, 
the simplest method is to discretize the elastic structure using MPS and 
PD particles with the same resolution, which can be referred to as 
Point-to-Point (PtoP) coupling. Structural particles possess the charac
teristics of both MPS particles and PD particles. MPS wall particles 
transmit the obtained fluid pressure to PD particles; conversely, PD 
particles transmit displacement and velocity to the MPS structural par
ticles of the elastic structure. The above coupling process can be 
expressed as: 

Fext = − (PsΔS)n (23) 

uMPS = uPD (24) 

Fig. 26. Schematic of the numerical model - deformation of an elastic plate 
induced by a hydrostatic water column.

Table 7 
Parameters in the simulation - deformation of an elastic plate induced by a 
hydrostatic water column.

MPS parameters Values PD parameters Values

Density (kg/ m3) 1000 Density (kg/m3) 2700
Initial particle spacing 

(m)
1.0×

10− 2
Initial particle spacing 
(m)

1.0× 10− 2, 8.0×

10− 3, 
6.67× 10− 3

Viscosity (Pa⋅ s) 8.9×

10− 5
Young’s modulus (Pa) 67.5× 109

Time step (s) 1.0×

10− 3
Poisson’s ratio 0.34

– – Time step (s) 2.0× 10− 6

0 1 2 3 4
-3.0E-6

-2.0E-6

-1.0E-6

0.0E+0

Y
)

m(tne
mecalpsid-

t (s)

Analytic solution MPS-PD (dp/dx =1)

MPS-PD (dp/dx =1.25) MPS-PD (dp/dx =1.5)

Fig. 27. Comparison of displacement time histories of the P probe between the 
analytic solution and MPS-PD results with different resolutions-deformation of 
an elastic plate induced by a hydrostatic water column.

Fig. 28. Snapshots of pressure/stress fields at t = 4.0 s reproduced by the MPS- 
PD solver with dp/dx = 1.5 - deformation of an elastic plate induced by a hy
drostatic water column.

0 1 2 3 4
-4.0E-3

-3.0E-3

-2.0E-3

-1.0E-3

0.0E+0

1.0E-3

ET /E
T 0-

1

t (s)

Analytic solution MPS-PD (dp/dx =1)

MPS-PD (dp/dx =1.25) MPS-PD (dp/dx =1.5)

Fig. 29. Comparison of time histories of normalized total energies between the 
analytic solution and MPS-PD results with different resolutions - deformation of 
an elastic plate induced by a hydrostatic water column.
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vMPS = vPD (25) 

where Ps is the pressure exerted on a PD particle, ΔS is the force-bearing 
area of MPS boundary particles, n is the normal direction of the 
boundary.

Several multi-resolution techniques are proposed to improve the 
efficiency and performance of FSI solvers. For example, the elastic 
structures and flow fields can be simulated with different resolutions 
using a multi-resolution particle method (Khayyer et al., 2019, 2021a). 
Besides, a high-resolution region can be set around the elastic structure. 
When coarse particles enter this region, they are split into finer particles 
by means of an Adaptive Particle Refinement (APR) method (Lyu et al., 
2023). In the present study, the Kernel Function-Based Interpolation 
(KFBI) technique is introduced into the MPS-PD solver. This technique 
previously was utilized and validated in 3D MPS-FEM solver (Zhang 
et al., 2022a), 2D SPH-Phase Field solver (Rahimi and Moutsanidis, 
2023), and 2D SPH-PD solver (Rahimi et al., 2022). The schematic of the 
KFBI technique is presented in Fig. 2. The pressure exerted on the PD 
particles on the structural surface is obtained by interpolating the 
pressure of MPS wall particles within their influence domain, given by: 

PS
a =

∑

i
PiniW(|ri − ra|)

∑

i
W(|ri − ra|)

(26) 

The displacement and velocity of MPS structural particles are, in 
turn, obtained by interpolating the displacement and velocity of PD 
particles, which are given by: 

ui =

∑

a
uaW(|ra − ri|)

∑

a
W(|ra − ri|)

(27) 

vi =

∑

a
u̇aW(|ra − ri|)

∑

a
W(|ra − ri|)

(28) 

Particle treatment near the fracture surface is shown in Fig. 3. When 
the structure fractures, MPS structural particles only interact with PD 
structural particles on the same side of the fracture surface. To prevent 

the penetration of fluid particles, when fluid particles approach the 
ghost particles at the fracture surface, these ghost particles are directly 
converted into wall particles and participate in solving the PPE.

The flow chart of the in house MPSPD-SJTU solver is presented in 
Fig. 4. Since the MPS method employed in this study is a semi-implicit 
solution, while the OSB-PD is an explicit solution, the time step of 
MPS can be larger than that of PD to balance the stability and efficiency 
of the MPS-PD solver. The Modified Serial Staggered (MSS) strategy (Sun 
et al., 2021) is employed, and under this strategy, the PD solver iterates 
several times within one MPS iteration loop. After the structure frac
tures, the fragments may collide with the wall boundary. Therefore, in 
addition to the PD force and FSI force, the DEM model is also invoked to 
calculate the contact force. The calculation of contact forces has been 
described in detail in our previous work (Xie et al., 2021b, 2025), and 
will not be repeated here.

3. Numerical results

3.1. Validation of MPS model

In this section, the accuracy of the MPS solver is first verified. The 
MPS solver is utilized to simulate dam-break flow impacting a fixed 
square obstacle, which has been studied experimentally by Kleefsman 
et al. (2005). The schematic of the numerical model is presented in 
Fig. 5. The dimensions of the numerical tank are 3.22 m× 1.0 m×

1.0 m.
A water column of 1.228 m × 0.1 m × 0.55 m is located on the right 

side of the water tank. A square obstacle with dimensions of 0.161 m ×
0.403 m × 0.161 m is placed on the central axis of the water tank, 0.744 
m away from the right wall of the tank. A pressure probe (marked as P1) 
is installed on the square obstacle, and a wave height probe (marked as 
H1) is installed at the bottom of the water tank. Other numerical pa
rameters are listed in Table 1.

Fig. 6 and Fig. 7 show the pressure and wave height time histories 
measured by the P1 and H1 probes. It can be noted that the MPS results 
converge well to the experimental data as the resolution is refined. Be
sides, the high-resolution MPS results all show good agreement with 
both the SPH simulation results (Sun et al., 2015) and the experimental 
data (Kleefsman et al., 2005) in terms of peak values and overall trends.

Fig. 8 shows the snapshots obtained respectively from the experi
ment and the MPS simulation. It can be seen that the MPS method can 
accurately describe the shape of the free surface of dam-break flow and 
capture the droplet splashing phenomenon during the impact process. 
This comprehensive comparison fully verifies the reliability and accu
racy of the MPS method in simulating dam-break flow-related problems.

3.2. Validations of OSB-PD model

3.2.1. Dynamic response of an oscillating cantilever beam
An oscillating cantilever beam is first simulated to validate the ac

Fig. 30. Schematic of the numerical model - deformation of a hanging elastic plate induced by the dam-break flow.

Table 8 
Parameters in the simulation - deformation of a hanging elastic plate induced by 
the dam-break flow.

MPS parameters Values PD parameters Values

Density (kg/ m3) 1000 Density (kg/m3) 1250
Initial particle spacing 

(m)
1.75×

10− 3
Initial particle spacing 
(m)

1.167×

10− 3

Viscosity (Pa⋅ s) 8.9× 10− 5 Young’s modulus (Pa) 4.0× 106

Time step (s) 2.5× 10− 4 Poisson’s ratio 0.4
– – Time step (s) 5.0× 10− 6
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Fig. 31. Comparison of the dam-break flow morphologies and structural deformations at different instants between experimental snapshots (Yilmaz et al., 2021) and 
numerical results obtained by the present 3D MPS-PD solver - deformation of a hanging elastic plate induced by the dam-break flow.

Fig. 32. Comparison of horizontal displacement time histories among the results obtained by experiment (Yilmaz et al., 2021), 2D SPH-SPH (Meng et al., 2022), 2D 
SPH-PD (Liang et al., 2025a), 3D SPH-FEM (Chen et al., 2025), and the present 3D MPS-PD - deformation of a hanging elastic plate induced by the dam-break flow.
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curacy of the PD part in the MPS-PD solver. The sketch of this numerical 
model is presented in Fig. 9. The cantilever beam has a length of 0.2 m, a 
width of 0.01 m, and a height of 0.02 m. A displacement probe is 
installed at the centroid of the free end. At the initial moment, the 
cantilever beam is undeformed and in an initial equilibrium position. 
The initial vertical velocity distribution acting on this beam is given by: 

vy(x) = vy(L)c0
f(x)
f(L)

(29) 

f(x)= (cos (kL)+ cosh (kL))(cosh (kx) − cos (kx))+ (sin (kL)
− sinh (kL))(sinh (kx) − sin (kx))

(30) 

where vy(L) = 0.01m/s is the initial velocity of the cantilever beam’s 
free end. For the fundamental mode, the value of kL is set to 1.875. c0 is 
the sound speed and can be calculated as: 

c0 =
̅̅̅̅̅̅̅̅̅̅̅
Ks/ρs

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Es/(3(1 − 2υ)ρs)

√
(31) 

where Ks is the bulk modulus, Es is the Young’s modulus, υ is the Pois
son’s ratio, and ρs is the density of the cantilever beam. Other numerical 
parameters can be found in Table 2.

The vertical displacement time histories of the probe are presented in 
Fig. 10. The detailed derivation of the analytical solution can be found in 
the literature (Khayyer et al., 2022b). It can be observed that the results 
with high resolution are slightly closer to the analytical solution. In 
general, the PD numerical simulation results with different resolutions 
are in good agreement with the analytical results in terms of both phase 
and peak value, which implies that the present PD solver exhibits good 
convergence characteristics. Besides, the stress distribution, as shown in 
Fig. 11, is smooth and matches well with deformation.

3.2.2. Static deflection of a clamped-clamped elastic beam under uniform 
load

The accuracy and stability of the PD solver are further investigated 
by simulating a clamped-clamped beam under uniform load, which has 
been utilized to validate the SPH structural solver by Khayyer et al. 
(2022b). The schematic of the numerical model is shown in Fig. 12. The 
beam has a length of 0.2 m, a width of 0.012 m, and a height of 0.012 m. 
A deflection probe is installed at the centroid of the bottom of the beam. 
A uniform load q = 20N/m2 is applied to the top surface of the beam. 
Other numerical parameters are presented in Table 3.

Vertical displacement time histories measured by the probe are 
presented in Fig. 13. The analytic solution is obtained based on the 
Euler-Bernoulli beam theory and the detailed derivation process can be 
found in the referenced literature (Khayyer et al., 2022b). The 
displacement time histories obtained by PD eventually stabilize at a 
constant value after a brief oscillation. It can be observed that the de
flections from simulations with different resolutions are very close to 
one another, and among these simulations, the deflection from the 
high-resolution simulation is the closest to the analytic solution. The 
stress field is very smooth and continuous, as shown in Fig. 14.

3.2.3. Kalthoff-Winkler impact test
The Kalthoff-Winkler impact test is a well-known benchmark case 

(Kalthoff, 2000), which has been widely used to verify the accuracy of 
the PD solver in simulating fracture problems. Fig. 15 shows the sche
matic of the numerical model. There is a steel plate with a length of 0.2 
m, a height of 0.1 m, and a width of 0.09 m. Two prefabricated cracks 
(each 0.05 m in length) extend inward from the upper edge of the steel 
plate, with a distance of 0.05 m between them. A cylinder with a height 
of 0.05 m and a diameter of 0.05 m impacts the area between the pre
fabricated cracks on the top of the steel plate at a velocity of 32 m/s in 

Fig. 33. Comparison of plate deformation results modelled by MPS and PD - 
deformation of a hanging elastic plate induced by the dam-break flow.

Fig. 34. Schematic of the numerical model - fracture of an elastic baffle 
induced by the dam-break flow.

Table 9 
Parameters in the simulation - fracture of an elastic baffle induced by the dam- 
break flow.

MPS parameters Values PD parameters Values

Density (kg/m3) 1000 Density (kg/m3) 2500
Initial particle spacing 

(m)
2.0×

10− 3
Initial particle spacing (m) 1.5× 10− 3

Viscosity (Pa⋅s) 8.9×

10− 5
Young’s modulus (Pa) 1.0× 106

Time step (s) 2.5×

10− 4
Poisson’s ratio 0.0

– – Critical energy release rate 
(J/m2)

6.07× 103,

97.9
– – Critical bond stretch ratio s0 1.0, 0.127
– – Time step (s) 5.0× 10− 6
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Fig. 35. Comparison of the dam-break flow morphologies and structural deformations between numerical snapshots obtained by 2D SPH-FPM (Liu et al., 2020) and 
those by the present 3D MPS-PD - fracture of an elastic baffle induced by the dam-break flow.
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the vertical downward direction. Other numerical parameters can be 
found in Table 4.

Fig. 16 presents the crack path reproduced by BB-PD and OSB-PD. 
Specifically, the BB-PD solver used herein was developed by rewriting 
the Fortran code from Madenci and Oterkus (2014) in C++. It can be 
observed that the crack morphologies simulated by the BB-PD solver and 
the OSB-PD solver are very similar. Both solvers have captured two types 
of cracks: one is the primary crack on the impact side, which is related to 
the presence of the prefabricated crack; the other is the secondary crack 
generated on the non-impact side due to the tensile force induced by the 
deformation of the steel plate. The overall path angles are approximately 
113.08◦ for BB-PD and 113.43◦ for OSB-PD, respectively. Both values are 
very close to the experimental value of 110◦, and relative errors of these 
two values are both less than 5%. Fig. 17 presents the damage process 
simulated by OSB-PD. It can be noticed that the primary crack initiates 
from the tip of the prefabricated crack and gradually extends to the side 
edge of the steel plate. The secondary crack gradually propagates from 
the non-impact side when the steel plate deforms significantly.

3.2.4. Three-point bending of an ice beam
In this section, the three-point bending test on an ice beam (Xue 

et al., 2018) is simulated, and the accuracy of the PD numerical model is 
verified from the perspectives of load and energy. The schematic of the 
numerical model is presented in Fig. 18. An ice sample with a length of 
0.65 m, a width of 0.07 m, and a thickness of 0.07 m is placed on two 
support points with a span of 0.6 m. The loading point P is located at the 
midspan of the ice and on its upper surface. Simulations are conducted 
with the loading point P moving downward at velocities VL of 0.005 m/s, 
0.01 m/s, and 0.02 m/s. Other numerical parameters are listed in 
Table 5.

Fig. 19 presents the load curves obtained by different approaches. 
Without any damping added, during the sea ice deformation phase, the 
load curve obtained by OSB-PD exhibits slight oscillations. Among these, 
the load curves obtained at loading rates of − 0.01 m/s and − 0.005 m/s 
show good agreement, indicating that the loading process in the nu
merical simulations can be regarded as a quasi-static process (Di, 2015; 
Xiong et al., 2025). It can be seen that during the ice deformation phase, 
the slope of the curve obtained by OSB-PD shows good agreement with 
the experimental results. Furthermore, the peak value of the force ob
tained by OSB-PD is 1160 N, which is also very close to the experimental 
value of 1128 N Fig. 20 presents the snapshots of the present OSB-PD 
simulation. It can be seen that cracks initiate from the bottom at the 
midspan of the ice, and the ice is eventually split into two parts. The 
same phenomenon has also been observed in different experiments (Ji 

et al., 2011; Ni et al., 2021).
The energy conservation features in the structure domain of the 

present OSB-PD solver are investigated. Energies need to satisfy: 

EL = ES
T = ES

E + ES
K + ES

P + ES
F (32) 

where EL refers to the work done by the loading point on the structural 
domain. ES

T is the total energy of the structural domain. ES
E, ES

K, ES
P, and ES

F 
are elastic strain energy, the kinetic energy, gravitational potential en
ergy, and released fracture energy of structure domain. Different en
ergies can be calculated as: 

EL =
∑

N
FL(t)VLΔtPD (33) 

ES
K =

∑

a∈ΩS

1
2
ms

a|u̇a|
2
,ES

P =
∑

a∈ΩS

mS
ag⋅ua (34) 

ES
E =

∑

a∈ΩS

WaVa =
∑

a∈ΩS

(
1
2
kʹθ2 +

α
2
∑

Rδ

(
ω
(
ed)2Vb

)
)

Va (35) 

ES
F =

∑

a∈ΩS

(
1
2
aʹθ1

2 + aʹθ1θ2 +
α
2
∑

H1

(
ωx2s0

2Vb
)
)

Va, aʹ = kʹ −
αq
9 (36) 

where N and FL refer to the total number of time steps and the external 
load, respectively. θ1 and θ2 are the volume dilatation of the fractured 
part and the volume dilatation of the unfractured part. H1 is the region 
where fracture occurs within the influence domain of PD particle a. The 
method for calculating released fracture energy was proposed by Wu 
(2024), which builds upon the approach of Zhang and Qiao (2018) by 
incorporating the coupling effect of θ1 and θ2.

Fig. 21 shows time histories of different energies. As can be seen, 
during the deformation stage, the total energy of the structural domain 
is almost consistent with the external work, while a small amount of 
gravitational potential energy is converted into elastic strain energy. 
After the ice is completely fractured, the loading point detaches from the 
ice, the external force no longer does work, and the total energy of the 
structural field also remains unchanged. This total energy is slightly 
lower than the total work done by the external force, with a relative 
error less than 4 %. In general, the present OSB-PD model exhibits good 
energy conservation performance and can meet the requirements of 
engineering applications.

The numerical results presented above indicate that the OSB-PD 
solver exhibits high accuracy and can be further coupled with MPS.

3.3. Validations of MPS-PD model

3.3.1. Deformation of an elastic gate induced by flood discharge
The accuracy of multi-resolution fluid-structure interpolation will be 

studied by simulating the flood discharge with an elastic gate, which is a 
benchmark test carried out by Antoci et al. (2007). The schematic of the 
numerical model is presented in Fig. 22. There is a water tank with a 
length of 0.5 m and a width of 0.1 m. A water column with a length of 
0.1 m, a width of 0.1 m, and a height of 0.14 m is located on the right 
side of the tank. There is an elastic gate hung from a rigid wall. The gate 
is located at the left end of the water column and adjacent to it. The 
elastic gate has a height of 0.079 m, a width of 0.1 m, and a thickness of 
0.005 m. A displacement probe is installed at the center of the bottom 
end of the elastic gate. At the initial state, the elastic gate is undeformed. 
As the numerical simulation begins, the elastic gate undergoes defor
mation under the action of the water pressure. Other numerical pa
rameters are listed in Table 6.

Fig. 23 depicts the X-directional and Y-directional displacements 
measured by the probe. It can be seen that the displacements in the two 
directions first rise rapidly and then gradually decrease over time. 
Overall, the numerical simulation results for different interpolation radii 
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 2D PFEM (ldelsohn et al., 2008)
 2D SPH-FPM (Liu et al., 2020)
 2D SPH-FEM (Long et al., 2016)
 2D SFEM (Zhang et al., 2019)
 3D SPH-PD (Dai et al., 2013)
 Present 3D MPS-PD 

Fig. 36. Comparison of horizontal displacement time histories of probe A 
among the numerical results obtained by 2D PFEM (Idelsohn et al., 2008), 2D 
SPH-FPM (Liu et al., 2020), 2D SPH-FEM (Long et al., 2016), 2D SFEM (Zhang 
et al., 2019), 3D SPH-PD (Dai et al., 2023), and the present 3D MPS-PD - 
fracture of an elastic baffle induced by the dam-break flow.
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are relatively consistent and are in good agreement with the experi
mental results. Among them, the numerical simulation result of rei = 3dp 
(where dp is the initial particle spacing of MPS) is slightly lower than 
those under other interpolation radii during the descending phase. This 
is because, as the influence radius increases, the pressure difference 
between adjacent regions exerted on the PD particles decreases. A 
convergence study is also conducted, as shown in Fig. 24. It can be 
observed that the numerical results with KFBI are almost identical to 
those with PtoP, which verifies the accuracy of KFBI. Besides, the nu
merical results with different resolutions show good agreement with 
each other, which indicates that the MPS-PD solver exhibits high 
convergence performance.

Fig. 25 shows the experimental snapshots and the corresponding 
numerical simulation results. At different times, both the flow 
morphology and the deformations of the elastic gate obtained by the 
MPS-PD solver are in good agreement with the experimental results. 
Moreover, both the flow field pressure distribution and structural stress 
distribution obtained from the simulation are very smooth and contin
uous, which further confirms the stability of the MPS-PD solver.

Fig. 37. Dam-break flow morphologies and structural damage produced by the present 3D MPS-PD - fracture of an elastic baffle induced by the dam-break flow.

Fig. 38. Comparison of vertical displacement time histories of the probe P2 
among the numerical results obtained by 2D SPH-FPM (Liu et al., 2020), 3D 
SPH-PD (Dai et al., 2023), and the present 3D MPS-PD with different resolutions 
- fracture of an elastic baffle induced by the dam-break flow.
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3.3.2. Deformation of an elastic plate induced by a hydrostatic water 
column

The accuracy and stability of the presented MPS-PD FSI solver are 
further evaluated through an FSI benchmark test of a hydrostatic water 
column on an elastic plate. This benchmark was first proposed by Fourey 
et al. (2017), and was extended for energy analysis (Khayyer et al., 
2018) and three-dimensional scenarios (Khayyer et al., 2022b). Fig. 26
presents the schematic of the numerical model in the present study. A 
water column of 0.6 m in height and 0.4 m in length is placed on a 
both-end-clamped elastic plate with a thickness of 0.04 m. There is a 
deflection probe at the midpoint of the plate. Other parameters for 
simulation are listed in Table 7.

Fig. 27 presents the displacement time histories of the P probe. The 
analytical solution is obtained via the classical plate theory, and the 
detailed derivation process can be found in the literature (Khayyer et al., 
2022b). Specifically, the maximum deflection at the midpoint of the 
elastic plate is 1.14× 10− 6m. It can be noticed that the numerical 
simulation results converge to the analytic solution as the PD resolution 
increases. When dp/dx = 1.5, the numerical results obtained by MPS-PD 
are closest to the analytic solution, and the deflection at the midpoint of 
the plate is 1.19× 10− 6m. The pressure/stress fields at t = 4.0 s repro
duced by the MPS-PD are shown in Fig. 28. It can be observed that the 
pressure/stress fields are very smooth, without the occurrence of 
non-physical oscillations.

The energy conservation of the entire FSI system is further evaluated. 
The formulation of each energy component can be expressed as: 

ET = ES
T + EF

T (37) 

where EF
T denotes the total energy of the fluid field, which is composed of 

the kinetic energy EF
K and potential energy EF

P of the fluid, and is 

expressed as: 

EF
T = EF

K + EF
P (38) 

EF
K =

∑

i∈ΩF

1
2
mF

i |vi|
2
,EF

P =
∑

i∈ΩF

mF
i g⋅ri (39) 

Fig. 29 shows the time histories of normalized total energies. It can 
be observed that the curves under different PD resolutions maintain 
consistency. This is because the loss of total energy is mainly dominated 
by the gravitational potential energy of the fluid (Khayyer et al., 2018; 
Zhang et al., 2022a), while the MPS resolution is kept constant in this 
case study. It can be observed that the energy loss curve oscillates 
initially and eventually stabilizes at a constant value of − 0.00177. In 
general, the MPS-PD solver exhibits good energy conservation 
performance.

3.3.3. Deformation of a hanging elastic plate induced by the dam-break 
flow

In this section, the MPS-PD solver is further validated by simulating 
the process of dam-break flow impacting a hanging elastic plate, which 
was experimentally investigated by Yilmaz et al. (2021). Fig. 30 presents 
the schematic of the numerical model. The length, width, and height of 
the numerical water tank are 1.58 m, 0.05 m, and 0.3 m, respectively. A 
water column with a length of 0.1 m, a width of 0.05 m, and a height of 
0.2 m is located on the left side of the water tank. There is an elastic plate 
suspended from a rigid wall, 0.8 m away from the left wall of the nu
merical water tank, and the elastic plate’s free end is 0.025 m above the 
tank’s bottom. The elastic plate has a width of 0.05 m, a height of 0.125 
m, and a thickness of 0.007 m. Other parameters for simulation are listed 
in Table 8.

Fig. 31 shows the flow morphologies and the deformations of the 
elastic plate at different times. The deformation of the elastic plate in
creases rapidly under the first impact of the dam-break flow, and then 
decreases quickly under the action of the restoring force. As the fluid 
accumulates on the left side of the elastic plate, its deformation increases 
again, and finally decreases gradually. It can be observed that both the 
shape of the dam-break flow and the deformation of the elastic plate 
simulated by MPS-PD are in good agreement with the experimental re
sults. Furthermore, both the pressure distribution of the flow field and 
the stress distribution of the structure are very smooth and continuous 
without any non-physical oscillations.

Fig. 32 presents horizontal displacement time histories at different 
probes obtained by experiment (Yilmaz et al., 2021), 2D SPH-SPH 
(Meng et al., 2022), 2D SPH-PD (Liang et al., 2025a), 3D SPH-FEM 
(Chen et al., 2025), and the present 3D MPS-PD. It can be noticed that 
the displacement curves have two peaks, which is consistent with the 
phenomenon observed in Fig. 31. The displacement time histories ob
tained by the MPS-PD method are in good agreement with the experi
mental displacement time histories and those from other numerical 
methods in terms of peak values and overall trends.

Fig. 33 shows the MPS structural models and the PD structural 

Fig. 40. Schematic of the numerical model - fracture of a hanging plate with a 
prefabricated crack induced by the dam-break flow.

Table 10 
Parameters in the simulation - fracture of a hanging plate with a prefabricated 
crack induced by dam-break flow.

MPS parameters Values PD parameters Values

Density (kg/m3) 1000 Density (kg/m3) 800
Initial particle spacing 

(m)
1.25×

10− 3
Initial particle spacing (m) 1.0×

10− 3

Viscosity (Pa⋅s) 8.9× 10− 5 Young’s modulus (Pa) 9.7× 106

Time step (s) 2.5× 10− 4 Poisson’s ratio 0.17
– – Critical energy release rate 

(J/m2)
3.56

– – Critical bond stretch ratio s0 0.01
– – Time step (s) 5.0×

10− 6

Fig. 39. Vertical displacement time histories of the probe P2 - fracture of an 
elastic baffle induced by the dam-break flow.
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Fig. 41. Dam-break flow morphologies and structural damage produced by present 3D MPS-PD (LPC = 0.04 m) - facture of a hanging plate with a prefabricated crack 
induced by the dam-break flow.

Fig. 42. Dam-break flow morphologies and structural damage obtained under different solid conditions at t = 0.2 s (LPC = 0.04 m) - fracture of a hanging plate with 
a prefabricated crack induced by the dam-break flow.
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models with different resolutions at the same time. It can be observed 
that the deformations of the two models maintain consistency, and the 
pressure on the MPS models corresponds accurately to the stress in the 
PD models. KFBI exhibits high accuracy in fluid-structure interpolation 
within the MPS-PD solver.

3.3.4. Fracture of an elastic baffle induced by the dam-break flow
Fracture of an elastic baffle induced by dam-break flow is investi

gated in this section. The schematic of the numerical model is presented 
in Fig. 34. There is a water tank with a length of 0.584 m, a width of 0.06 
m, and a height of 0.438 m. A water column with a length of 0.146 m, a 
width of 0.06 m, and a height of 0.292 m is on the left side of the water 
tank. There is an elastic baffle with a height of 0.08 m, a width of 0.04 m, 
and a thickness of 0.0012 m located at the center of the bottom of the 
water tank. The bottom of the elastic baffle is rigidly fixed to the water 
tank, while its top is a free end. Other parameters are listed in Table 9.

Firstly, a numerical simulation is conducted on the case without 
elastic baffle fracture, and the value of the critical bond stretch ratio s0 is 
set to 1.0. The snapshots of the present numerical results are compared 
with those simulated by 2D SPH-FPM (Liu et al., 2020), as shown in 
Fig. 35. The simulation results demonstrate the key processes of 
dam-break flow–elastic baffle interaction, the deformation of the elastic 
baffle, the formation of an obvious tongue jet, and the subsequent jet 
impacting the rigid wall. The deformation of the elastic baffle and the 
shape of the free liquid surface obtained using 2D SPH-FPM and the 
present 3D MPS-PD are both in good agreement with each other. 
Furthermore, both the pressure distribution of the flow field and the 
stress distribution of the structure obtained by the proposed 3D MPS-PD 
solver are very smooth.

Horizontal displacement time histories of probe A among the nu
merical results obtained by 2D PFEM (Idelsohn et al., 2008), 2D 
SPH-FPM (Liu et al., 2020), 2D SPH-FEM (Long et al., 2016), 2D SFEM 
(Zhang et al., 2019), 3D SPH-PD (Dai et al., 2023), and the present 3D 
MPS-PD are presented in Fig. 36. Overall, the time histories obtained by 
different methods follow similar trends. Upon the contact of the 
dam-break flow with the baffle, negative displacement can be observed. 

Fig. 43. Dam-break flow morphologies and structural damage obtained under different lengths of prefabricated cracks at t = 0.2 s - fracture of a hanging plate with 
aprefabricated crack induced by the dam-break flow.
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Fig. 44. Final crack lengths versus different prefabricated crack lengths - 
fracture of a hanging plate with a prefabricated crack induced by the dam- 
break flow.
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When t < 0.6 s, the rate of displacement increase, the magnitude of its 
peak value, and the rate of displacement decrease obtained by different 
methods are in good agreement. When t > 0.6 s, the back-and-forth 
deformation of the elastic baffle can also be well captured by different 
numerical methods.

Then, the fracture of the elastic baffle induced by dam-break flow is 
simulated by the present 3D MPS-PD, and the value of the critical bond 
stretch ratio s0 is set to 0.127. The dam-break flow morphologies and 
structural damage is presented in Fig. 37. Under the impact of the dam- 
break flow, the baffle deforms, and the stress at its ends increases 
gradually. When the deformation of the baffle reaches a certain extent, 
cracks start to appear at the fixed end of the baffle. With the continuous 
action of the dam-break flow, the cracks gradually expand, and finally 
the baffle detaches from the fixed end. It can be seen that the shape of 
the jet is obviously different from that in the case without baffle fracture. 
Although the baffle fractures rapidly and causes significant disturbance 
to the flow field, the pressure field remains relatively smooth, without 
non-physical oscillations, which further demonstrates the stability of the 
3D MPS-PD method.

Fig. 38 plots vertical displacement time histories of the probe P2 
obtained by numerical methods in the fracture case. Overall, the 
movement of the baffle produced by the present 3D MPS-PD agrees well 
with that by other methods. Furthermore, the numerical results under 
different resolutions are almost identical, which demonstrates that the 
KFBI technique can also maintain high interpolation accuracy in fracture 
problems. Displacement changes induced by fracture and contact are 
further presented in Fig. 39. When the baffle shows no damage, the 
displacements in the non-fracture case and those in the fracture case 
remain consistent. At t = 0.207 s, when the two curves separate, this 
indicates the occurrence of damage. At t = 0.301 s, the baffle exhibits 
reverse movement, indicating that it comes into contact with the wall. 
After multiple contacts with the bottom of the water tank, the 
displacement of the baffle stabilizes around a constant value. When t >
0.45 s, the minor fluctuations in the displacement time histories are 
caused by fluid flow. The displacement of the P2 should be equal to the 
height of the P2 minus half of the baffle’s thickness, which corresponds 
to the analytic solution. It can be observed that the maximum 
displacement obtained by the MPS-PD method is almost consistent with 
the analytic solution. The contact model adopted by the 3D MPS-PD 
solver is accurate and reliable.

3.3.5. Fracture of a hanging plate with a prefabricated crack induced by the 
dam-break flow

In this section, the proposed 3D MPS-PD solver is employed to 
investigate the interaction between dam-break flow and a vertically 
hanging plate with a prefabricated crack. The schematic of the numer
ical model is presented in Fig. 40. There is a water tank with a length of 
0.5 m and a width of 0.1 m. A water column with a length of 0.04 m, a 
width of 0.05 m, and a height of 0.14 m is on the right side of the water 
tank. A hanging elastic plate with a width of 0.1 m, a height of 0.079 m, 
and a thickness of 0.005 m is located 0.1 m away from the right wall of 
the water tank. The top of the plate is the fixed end, and the bottom is the 
free end. There is a horizontal prefabricated crack on the plate, which is 
0.04 m away from the bottom of the water tank. Other parameters can be 
found in Table 10.

Fig. 41 shows the dam-break flow morphologies and structural 
damage when the length of the prefabricated crack (LPC) is 0.04 m. It can 
be observed that at t ≈ 0.115 s, the fracture initiates first from the tip of 
the prefabricated crack, and this new crack formed by the fracture is 
referred to as Crack A. At t ≈ 0.12 s, a new Crack B initiates on the right 
side near the fixed end of the plate and propagates toward the left. At t ≈
0.125 s, Crack A has traversed the entire plate, and a fragment detaches 
around the height of the prefabricated crack. Subsequently, some fluid 
climbs up along the fragment and forms a jet flow, which impacts the 
fracture surface of the remaining part of the plate at t = 0.18 s. It can be 
observed that due to the presence of the plate, the trajectory of the jet 

flow changes, and no obvious particle penetration phenomenon is 
observed, which indicates that the fracture surface treatment method in 
the 3D MPS-PD method is reliable.

Fig. 42 presents dam-break flow morphologies and structural dam
age obtained under different boundary conditions. The DEM contact 
model is utilized in the case with solid boundary, while it is not 
employed in the case without solid boundary. It can be seen that in the 
case without a solid boundary, a part of the fragments is located outside 
the water tank, which is inconsistent with reality. Besides, in this case 
without solid boundary, the length of Crack B (LC = 0.073 m) is 
significantly longer than that (LC = 0.067m) in the case with a solid 
boundary. This is because without the constraint of the solid boundary, 
the plate can undergo greater torsional deformation. In conclusion, the 
DEM contact model adopted in this study is effective.

Fig. 43 and Fig. 44 compare the influence of the prefabricated crack 
lengths on structural damage. It can be seen that as the prefabricated 
crack length increases, the length of Crack A increases, while that of 
Crack B decreases. It is worth noting that when LPC = 0.03 m, both 
Crack A and Crack B eventually traverse the entire plate. However, the 
fragments only detach around the height of the prefabricated crack 
rather than from the ends of the plate. When LPC > 0.03 m, the frag
ments detach near the height of the prefabricated crack, whereas when 
LPC < 0.03 m, they detach near the ends of the plate.

In general, the 3D MPS-PD method is capable of reasonably pre
dicting structural fracture behavior in violent FSI problems.

4. Conclusions and prospects

In this paper, a 3D multi-resolution MPS-PD method is proposed to 
solve violent FSI problems involving structural deformation and frac
ture. Fluid pressure on the structural surface is transmitted from MPS 
wall particles to PD surface particles, while displacements and velocities 
are transmitted from PD structural particles to MPS structural particles. 
Besides, the KFBI technique is incorporated into the MPS-PD solver, 
enabling the flow field and structural field to be simulated at different 
resolutions.

Firstly, the accuracy of MPS solver is evaluated by simulating dam- 
break flow impacting a fixed square obstacle.

Secondly, the PD-based structural solver is validated by simulating 
several 3D benchmark tests, including an oscillating cantilever plate, a 
clamped-clamped beam under uniform load, the Kalthoff-Winkler 
impact test, and three-point bending of an ice beam. The displacement 
time histories of the structures at various resolutions exhibit good 
agreement with the analytic solutions, demonstrating good convergence 
performance of the developed PD solver. Furthermore, the stress fields 
exhibit spatial continuity and smoothness. In problems involving frac
ture, the cracks obtained from the simulations show good agreement 
with those from other numerical methods as well as experimental re
sults; meanwhile, the energy dissipation caused by computational errors 
is relatively small, further confirming the accuracy of the developed PD 
solver.

Subsequently, the MPS-PD solver is utilized to investigate FSI prob
lems, such as the flood discharge with an elastic plate, the hydrostatic 
water column on an elastic plate, the dam-break flow with a hanging 
elastic plate, and the dam-break flow with an elastic obstacle. The in
fluence of the interpolation radius on computational results is evaluated. 
For different diameter ratios between fluid and structure particles, the 
simulated structural dynamic responses exhibit high consistency, con
firming the accuracy of the interpolation method. Moreover, its results 
are in good agreement with the experimental results as well as those 
from other numerical methods. Furthermore, the FSI solver exhibits high 
energy conservation performance. Overall, the developed 3D MPS-PD 
solver is capable of accurately solving 3D FSI problems.

Finally, the MPS-PD solver is employed to investigate the dam-break 
flow impacting a hanging elastic plate with a prefabricated crack. Nu
merical results indicate that the length of prefabricated cracks exerts a 
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significant influence on the extent of structural damage.
The PD model used in the present paper applies only to linear elastic 

materials; it therefore needs to be extended to plastic and composite 
materials for practical marine engineering applications, such as offshore 
platforms or ship hull fracture analysis (Pirzadeh et al., 2024, 2025). To 
further improve the accuracy of MPS-PD model, the adaptive refinement 
technique should be introduced to better simulate the interaction be
tween fluid and fractures during the fracture process. Furthermore, 
integrating multi-GPU acceleration technology into the MPS-PD solver 
will enable tackling of more complex marine engineering problem
s—such as ship-water-ice interaction, a scenario that requires repeated 
establishment of PD neighbor particles and thus consumes considerable 
computational time.
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